Энрике Грасиан - Мир математики. т.3. Простые числа. Долгая дорога к бесконечности

Тут можно читать онлайн Энрике Грасиан - Мир математики. т.3. Простые числа. Долгая дорога к бесконечности - бесплатно полную версию книги (целиком) без сокращений. Жанр: Математика, издательство «Де Агостини», год 2014. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Мир математики. т.3. Простые числа. Долгая дорога к бесконечности
  • Автор:
  • Жанр:
  • Издательство:
    «Де Агостини»
  • Год:
    2014
  • Город:
    Москва
  • ISBN:
    978-5-9774-0637-6
  • Рейтинг:
    3.89/5. Голосов: 91
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Энрике Грасиан - Мир математики. т.3. Простые числа. Долгая дорога к бесконечности краткое содержание

Мир математики. т.3. Простые числа. Долгая дорога к бесконечности - описание и краткое содержание, автор Энрике Грасиан, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Поиск простых чисел — одна из самых парадоксальных проблем математики. Ученые пытались решить ее на протяжении нескольких тысячелетий, но, обрастая новыми версиями и гипотезами, эта загадка по-прежнему остается неразгаданной. Появление простых чисел не подчинено какой-либо системе: они возникают в ряду натуральных чисел самопроизвольно, игнорируя все попытки математиков выявить закономерности в их последовательности. Эта книга позволит читателю проследить эволюцию научных представлений с древнейших времен до наших дней и познакомит с самыми любопытными теориями поиска простых чисел.

Мир математики. т.3. Простые числа. Долгая дорога к бесконечности - читать онлайн бесплатно полную версию (весь текст целиком)

Мир математики. т.3. Простые числа. Долгая дорога к бесконечности - читать книгу онлайн бесплатно, автор Энрике Грасиан
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Бесконечные суммы

Еще Эйлер для обозначения суммы, или «суммирования», ввел специальный символ, который используется и в современной математике. Это знак Σ— заглавная буква «сигма» греческого алфавита, а также первая буква слова «сумма».

Выражение суммирования записывается следующим образом:

Σ i=5 j=1 i,

где есть переменная, в данном случае i , и индексы, показывающие, как эта переменная изменяется. В данном примере i изменяется от 1 до 5. Таким образом:

Σ i=5 j=1 i= 1 + 2 + 3 + 4 + 5;

Σ i=3 j=1 (n+ 1)= (1 + 1) + (2 + 1) + (3 + 1);

Σ i=4 j=1 n 2= 1 2+ 2 2+ 3 2+ 4 2.

Обычно запись выражения упрощают, указывая в качестве верхнего индекса лишь последнее значение переменной:

Σ 5 j=1 i= 1 + 2 + 3 + 4 + 5.

Это означает, что i меняется от 1 до 5.

Если верхний предел не является числом, то используется символ бесконечности, означающий, что сумма бесконечна. Например:

Хотя это может показаться странным но существуют бесконечные суммы результат - фото 29

Хотя это может показаться странным, но существуют бесконечные суммы, результат которых является конечным числом. Ряды, имеющие такую сумму, называются сходящимися. Например, ряд

имеет конечную сумму приблизительно равную 2 Так как члены ряда становятся - фото 30

имеет конечную сумму, приблизительно равную 2. Так как члены ряда становятся все меньше и меньше, в какой-то момент каждый следующий член будет настолько мал, что его добавление ничего не изменит, и итоговая сумма будет конечным числом. Безусловно, это не совсем точное объяснение. Можно предположить, что ряд типа

также имеет конечную сумму но это не так Данный ряд которым особенно - фото 31

также имеет конечную сумму, но это не так. Данный ряд, которым особенно интересовался Эйлер, называется гармоническим. Эйлер использовал его, чтобы получить еще одно доказательство бесконечности множества простых чисел.

* * *

БАЗЕЛЬСКАЯ ЗАДАЧА

Братья Якоб (1654–1705) и Иоганн(1667–1748) Бернулли занимались изучением гармонических рядов. Особенно активно они работали в период между 1689 и 1704 гг. Именно они доказали, что некоторые ряды расходятся. Воодушевленные результатами, они взялись за ряд обратных квадратов:

Якоб показал что ряд сходится и ему даже удалось доказать что сумма ряда - фото 32

Якоб показал, что ряд сходится, и ему даже удалось доказать, что сумма ряда меньше или равна двум, но он не смог найти точное значение. Он так увлекся этой проблемой, что сказал: «Велика будет наша благодарность, если кто-нибудь найдет и сообщит нам о том, что до сих пор избегало нашего внимания». Эта проблема известна как «базельская задача», потому что Якоб заведовал кафедрой математики в университете швейцарского города Базеля, и именно там он произнес свои знаменитые слова.

Многие великие математики, в том числе Менголи и Лейбниц, не смогли решить эту задачу, не говоря уже о совместных усилиях братьев Бернулли. И лишь спустя 30 лет решение было найдено «волшебником» Эйлером. Результат был действительно впечатляющим:

Эйлер писал об этом результате так Я сейчас обнаружил вопреки всем ожиданиям - фото 33

Эйлер писал об этом результате так:

«…Я сейчас обнаружил вопреки всем ожиданиям элегантное выражение для суммы ряда 1 + 1/4 + 1/9 + 1/16 + …, которое имеет отношение к квадратуре круга… Я обнаружил, что сумма этого ряда, умноженная на 6, равна квадрату длины окружности, диаметр которой — единица».

К сожалению, Якоб умер к тому времени, когда Эйлер опубликовал свои результаты. «Эх, если бы мой брат был жив!» — воскликнул Иоганн.

«Волшебником» Эйлера называли из-за совершенно магических методов, которые он использовал в доказательствах. На самом деле доказать этот результат совсем не сложно, но такой подход требует некоторых знаний высшей математики и показывает смелость Эйлера, который рассмотрел этот ряд в качестве полиномиальной функции, а затем связал его с разложением в ряд функции синуса. Отсюда и появилось число π, которое является одним из нулей синуса.

Иоганн Бернуллибыл учителем Эйлера и одним из лучших математиков своего - фото 34

Иоганн Бернуллибыл учителем Эйлера и одним из лучших математиков своего времени.

* * *

Гармонический ряд расходится, и это означает, что сумма его членов бесконечна, но расходится он чрезвычайно медленно по сравнению с рядом вида

Работая с гармоническим рядом Эйлер вывел функцию вошедшую в историю как одна - фото 35

Работая с гармоническим рядом, Эйлер вывел функцию, вошедшую в историю как одна из важнейших функций математики: «дзета-функция Эйлера», которая в настоящее время несколько несправедливо называется «дзета-функцией Римана».

Для ее обозначения Эйлер использовал греческую букву ζ(дзета):

Если взять х 1 то мы получим уже известный нам гармонический ряд причем мы - фото 36

Если взять х = 1, то мы получим уже известный нам гармонический ряд причем мы знаем что его сумма бесконечна Однако Эйлер предполагал что при х - фото 37причем мы знаем, что его сумма бесконечна. Однако Эйлер предполагал, что при х = 2 сумма ряда

не будет бесконечной так как здесь содержатся только некоторые члены - фото 38

не будет бесконечной, так как здесь содержатся только некоторые члены гармонического ряда, а именно дроби с квадратами. Но найти сумму этого ряда было практически невозможно, используя знания того времени. Тем не менее Эйлеру удалось блестяще доказать следующее равенство:

Эйлер сделал это открытие в возрасте 28 лет хотя ему понадобилось еще шесть - фото 39

Эйлер сделал это открытие в возрасте 28 лет, хотя ему понадобилось еще шесть лет, чтобы отшлифовать доказательство. Неожиданное появление в выражении для суммы ряда числа π, которое встречается в формулах площади круга и длины окружности, вызвало удивление всего математического сообщества того времени. С помощью этого результата Эйлер смог решить одну из самых интригующих проблем того времени, так называемую «базельскую задачу».

Экспериментируя с дзета-функцией, Эйлер получил ряд результатов. Например, он уже знал, что при х , меньших или равных 1, сумма ряда бесконечна, и что, следовательно, ряд сходится только при х , больших 1.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Энрике Грасиан читать все книги автора по порядку

Энрике Грасиан - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Мир математики. т.3. Простые числа. Долгая дорога к бесконечности отзывы


Отзывы читателей о книге Мир математики. т.3. Простые числа. Долгая дорога к бесконечности, автор: Энрике Грасиан. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x