Бизенц Торра - Том 15. От абака к цифровой революции. Алгоритмы и вычисления

Тут можно читать онлайн Бизенц Торра - Том 15. От абака к цифровой революции. Алгоритмы и вычисления - бесплатно полную версию книги (целиком) без сокращений. Жанр: Математика, издательство «Де Агостини», год 2014. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Том 15. От абака к цифровой революции. Алгоритмы и вычисления
  • Автор:
  • Жанр:
  • Издательство:
    «Де Агостини»
  • Год:
    2014
  • ISBN:
    978-5-9774-0710-6
  • Рейтинг:
    4.75/5. Голосов: 81
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Бизенц Торра - Том 15. От абака к цифровой революции. Алгоритмы и вычисления краткое содержание

Том 15. От абака к цифровой революции. Алгоритмы и вычисления - описание и краткое содержание, автор Бизенц Торра, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Алгоритмы управляют работой окружающих нас электронных устройств, благодаря которым становится возможным существование нашего удивительного цифрового мира.

По сути, компьютерная программа — не более чем алгоритм, составленный на языке, понятном компьютеру. Однако царствование алгоритмов в вычислительной технике — лишь краткий эпизод долгой и интересной истории, которая началась вместе с зарождением вычислений. В этой книге рассказывается история алгоритмов, а также описываются важнейшие особенности вычислений и вычислительной техники, начиная от первых счетных палочек и заканчивая компьютерами, без которых невозможно представить современный мир.

Том 15. От абака к цифровой революции. Алгоритмы и вычисления - читать онлайн бесплатно полную версию (весь текст целиком)

Том 15. От абака к цифровой революции. Алгоритмы и вычисления - читать книгу онлайн бесплатно, автор Бизенц Торра
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

До появления компьютеров наилучших результатов добился англичанин Д. Фергюсон, который исключительно с помощью калькулятора вычислил свыше тысячи знаков: 620 знаков в 1946 году, 808 — в 1947-м, 1120 — в 1949-м (совместно с Джоном Ренчем).

Джон Ренч в том же году впервые в истории вычислил приближенное значение τ с помощью компьютера. По инициативе Джона фон Неймана расчеты производились на компьютере ENIAC. Спустя 70 часов вычислений было получено 2037 знаков Я. Пять лет спустя, в 1954 году, Николсон и Джинель превзошли этот результат, вычислив 3092 знака Я всего за 13 минут с помощью IBM NORC — самого мощного компьютера того времени. В 1959 году, опять же спустя пять лет, на IBM 704, первом массовом компьютере, где была реализована арифметика с плавающей запятой, за 4,3 часа было вычислено 16167 знаков. Расчеты произвел Франсуа Женюи в Париже. Вскоре пал рубеж в 100000 знаков: его преодолели Дэниел Шенке и Джон Ренч в 1961 году с помощью нового компьютера IBM 7090, в котором вместо электронных ламп использовались транзисторы, что позволило в шесть раз увеличить скорость расчетов по сравнению с его предшественниками. 100265 знаков были вычислены за 8,7 часа.

Джин Гийу в 1966 году установил новый рекорд, вычислив 250 000 знаков за 41 час 55 минут. Он же в 1967 году получил 500 000 знаков за 28 часов 10 минут.

Впечатляющий показатель в миллион знаков был достигнут усилиями Джина Гийу и Мартина Буйе в 1973 году. Они использовали компьютер CDC 7600 компании Control Data Corporation — конкурента IBM на рынке компьютеров второго поколения (в них использовались транзисторы), которые выпускались в 1960-е. За 23 часа 18 минут было вычислено 1001250 знаков 71.

В 1980-е главную роль играли японцы Ясумаса Канада и Казунори Миёши: в 1981 году им удалось преодолеть отметку в 2 миллиона знаков за 137 часов, в 1982-м — 8 миллионов за 6 часов 52 минуты, в 1983-м — 16 миллионов менее чем за 30 часов, в 1987-м на японском компьютере NEC SX-2 им удалось вычислить 100 миллионов знаков за 35 часов 15 минут. В 1989 году Григорий Чудновский, который считается одним из лучших среди ныне живущих математиков, и его брат Давид вычислили свыше миллиарда знаков 71 на компьютере IBM 3090.

Отметку в триллион знаков преодолел Ясумаса Канада и возглавляемая им группа, которая использовала компьютер HITACHI SR8000/MPP. Этот рекорд был установлен в Токио в декабре 2002 года. Для вычисления 1241100000000 знаков потребовалось 600 часов, то есть 25 суток вычислений, что соответствует скорости 574583 знака в секунду. В апреле 2009 года японец Дайсуке Такахаши из университета Цукуба вычислил более 2 триллионов знаков за 29,09 часа. Нынешний рекорд, который составляет почти 2,7 триллиона знаков [2] Данные на 31.12.2009 года. 19 октября 2011 года Александр Йи и Сигэру Кондо вычислили 10 триллионов знаков после запятой. , удерживает французский программист Фабрис Беллар, который использовал обычный персональный компьютер под управлением операционной системы Linux. На выполнение расчетов ему потребовался 131 день.

Большинство этих результатов были получены благодаря открытиям удивительного и загадочного индийского математика Сринивасы Рамануджана(1887–1920). Один из полученных им рядов, опубликованный в 1914 году, дает 8 новых знаков π на каждый член ряда. Этот ряд записывается так:

На основе результатов полученных Рамануджаном были найдены ряды которые - фото 122

На основе результатов, полученных Рамануджаном, были найдены ряды, которые сходятся еще быстрее и позволяют получить несколько верных знаков числа π для каждого члена ряда. Братья Джонатан и Питер Борвейн, канадцы шотландского происхождения, открыли ряд, каждый член которого дает 31 новый знак π .

Остальные результаты, среди которых выделяются достижения Ясумасы Канады, получены с помощью формулы Карла Фридриха Гаусса(1777–1855) , в которой устанавливается связь между числом π и средним арифметико-геометрическим. Формула Гаусса записывается следующим образом:

Том 15 От абака к цифровой революции Алгоритмы и вычисления - изображение 123

В этой формуле MAG( а, Ь ) — это среднее арифметико-геометрическое чисел а и Ь .

Равенства, недавно полученные Дэвидом Бэйли, Питером Борвейном и Саймоном Плуффом, представляют собой наиболее интересные выражения, связанные с числом π . В 1997 году эти исследователи опубликовали ряд формул, которые позволяют вычислить любой знак двоичной записи π без необходимости вычислять предшествующие ему знаки. Эти же формулы, очевидно, можно использовать для расчета знаков π в любой системе счисления по основанию, кратному двум, в частности в шестнадцатеричной системе счисления. Авторы подтвердили корректность своего метода, вычислив миллионный, 10-миллионный, 100-миллионный, миллиардный и 10-миллиардный знаки шестнадцатеричной записи π . В результате были получены следующие шестнадцатеричные числа.

* * *

СРЕДНЕЕ АРИФМЕТИКО-ГЕОМЕТРИЧЕСКОЕ

Среднее арифметико-геометрическое определяется на основе двух сходящихся рядов: один из них образован средними арифметическими, другой — средними геометрическими. Напомним выражения для вычисления обеих средних величин:

МА( а, Ь ) = ( a + b )/2

MG( a, b ) = √( a·b) .

Первые члены рядов и mg определяются так: ma 1 = МА( a, b ), mg 1 = MG( а, b ). Члены ряда в общем виде определяются так:

ma n+1 = МА( ma n, mg n),

mg n+1 = МG( ma n, mg n)

Эти два ряда сходятся к одному и тому же значению — среднему арифметико-геометрическому MAG( а, Ь ).

* * *

Одна из формул предложенных Бэйли Борвейном и Плуффом записывается так - фото 124

Одна из формул, предложенных Бэйли, Борвейном и Плуффом записывается так:

СИСТЕМЫ СЧИСЛЕНИЯ В десятичной системе счисления как следует из ее - фото 125

* * *

СИСТЕМЫ СЧИСЛЕНИЯ

В десятичной системе счисления, как следует из ее названия, используется десять различных цифр. Они записываются в привычном нам виде: 0, 1, 2, 3, 4, 5, 6, 7, 8 и 9.

В двоичной системе счисления используются всего две цифры — 0 и 1. В шестнадцатеричной системе используется 16 цифр. Чаще всего они записываются так: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, А, В, С, D, Е, F. Символ А соответствует значению 10 в десятичной системе счисления, В — 11, С — 12, D — 13, Е — 14, F — 15.

Двоичная и шестнадцатеричная система тесно связаны между собой, так как 16 кратно 2 и перейти от одной из этих систем к другой очень просто.

Чтобы перевести число из двоичной системы в шестнадцатеричную, нужно сгруппировать биты по 4, и каждой группе будет соответствовать одна шестнадцатеричная цифра. Чтобы перевести число из шестнадцатеричной системы в двоичную, нужно заменить каждую из шестнадцатеричных цифр на четыре двоичных цифры по следующим правилам:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Бизенц Торра читать все книги автора по порядку

Бизенц Торра - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Том 15. От абака к цифровой революции. Алгоритмы и вычисления отзывы


Отзывы читателей о книге Том 15. От абака к цифровой революции. Алгоритмы и вычисления, автор: Бизенц Торра. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x