Хавьер Фресан - Том. 22. Сон разума. Математическая логика и ее парадоксы

Тут можно читать онлайн Хавьер Фресан - Том. 22. Сон разума. Математическая логика и ее парадоксы - бесплатно полную версию книги (целиком) без сокращений. Жанр: Математика, издательство «Де Агостини», год 2014. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Том. 22. Сон разума. Математическая логика и ее парадоксы
  • Автор:
  • Жанр:
  • Издательство:
    «Де Агостини»
  • Год:
    2014
  • Город:
    Москва
  • ISBN:
    978-5-9774-0717-5
  • Рейтинг:
    4.44/5. Голосов: 91
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Хавьер Фресан - Том. 22. Сон разума. Математическая логика и ее парадоксы краткое содержание

Том. 22. Сон разума. Математическая логика и ее парадоксы - описание и краткое содержание, автор Хавьер Фресан, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

На пути своего развития математика периодически переживает переломные моменты, и эти кризисы всякий раз вынуждают мыслителей открывать все новые и новые горизонты. Стремление ко все большей степени абстракции и повышению строгости математических рассуждений неминуемо привело к размышлениям об основах самой математики и логических законах, на которые она опирается. Однако именно в логике, как известно еще со времен Зенона Элейского, таятся парадоксы — неразрешимые на первый (и даже на второй) взгляд утверждения, которые, с одной стороны, грозят разрушить многие стройные теории, а с другой — дают толчок их новому осмыслению.

Имена Давида Гильберта, Бертрана Рассела, Курта Гёделя, Алана Тьюринга ассоциируются именно с рождением совершенно новых точек зрения на, казалось бы, хорошо изученные явления. Так давайте же повторим удивительный путь, которым прошли эти ученые, выстраивая новый фундамент математики.

Том. 22. Сон разума. Математическая логика и ее парадоксы - читать онлайн бесплатно полную версию (весь текст целиком)

Том. 22. Сон разума. Математическая логика и ее парадоксы - читать книгу онлайн бесплатно, автор Хавьер Фресан
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

В некотором смысле теория множеств и логика находятся на вершине отвесной скалы: истинное расположено на самом краю, и достаточно легкого дуновения ветерка, чтобы отправиться в свободное падение по направлению к ложному. Однако большую часть земной поверхности занимают не отвесные скалы, а пологие склоны.

Несколько лет назад во многих странах произвела настоящий фурор настольная игра Scattergories . В этой игре нужно выбрать любую букву алфавита, а затем записать слова из разных областей, которые начинаются с этой буквы. Например, если нам дан список «Спорт. Названия песен. Части тела. Национальная кухня. Оскорбления» и после броска игральной кости, которая имеет форму икосаэдра, выпала буква «К», ответ может звучать так: «Кёрлинг. «Катюша». Колено. Кулебяка. Кретин!». В рекламе игры Scattergories расстроенный мальчик уходит из дома, унося игру с собой, потому что его друзья сказали, что «корабль» не относится к категории «морские животные». В конце концов они решают уступить ему, так как хотят продолжить игру, но в следующем туре мальчик вновь принимается за старое: когда выпадает буква «О», он спрашивает друзей: «А осьминога можно назвать домашним животным?»

В то время как некоторых живых существ затруднительно причислить к животным, множество домашних животных определено еще хуже: к нему, конечно же, принадлежат кошки и собаки, и так же совершенно однозначно в него не входят волки и слоны. Однако хотя некоторые причислят тарантулов к множеству «животных, к которым я не хочу подходить ближе, чем на километр», другие развлекаются тем, что бросают тарантулам сверчков между прутьями клетки. Так же нечетко, как и множество домашних животных, определены и другие множества, с которыми мы имеем дело каждый день, например множество красивых людей, хороших ресторанов и смешных шуток. Первым предложил теорию, описывающую подобные ситуации, польский логик Ян Лукасевич (1878–1956) . В 1917 году он представил трехзначную логику, в которой высказывания могли быть не только истинными или ложными, но и «возможными». Например, человек ростом 1,50 м низкий, человек ростом 2 м — высокий, а тот, чей рост составляет 1,75 м, является «возможно, высоким» или «возможно, низким» — все зависит от того, с кем мы его сравниваем: с пигмеями или игроками НБА.

* * *

МЕСТЬ ЛЖЕЦА

Если мы вновь рассмотрим парадокс лжеца, на этот раз с точки зрения трехзначной логики Лукасевича, то увидим, что противоречие исчезает: основа наших рассуждений заключалась в том, что если высказывание «эта фраза ложна» не является истинным, то оно обязательно является ложным. Однако в новой логике существуют высказывания, которые являются не истинными и не ложными, а возможными. Поскольку суть парадокса не сводится исключительно к закону исключенного третьего, его можно переформулировать так, что он сохранится и в трехзначной логике. Рассмотрим высказывание «эта фраза не является истинной». Все высказывания делятся на три класса (истинные, ложные и возможные), поэтому мы рассмотрим каждый класс по очереди. Если высказывание истинно, то оно должно выполняться, следовательно, оно не будет истинным. Если, напротив, высказывание является ложным или возможным, тогда оно не является истинным и, следовательно, должно быть истинным. В новой логике определить истинность высказывания «эта фраза не является истинной» по-прежнему невозможно.

* * *

Включение в перечень возможных значений истинности значения «возможно» стало настоящим прорывом за пределы черно-белого мира классической логики.

Однако этого прорыва оказалось недостаточно: значение «возможно» само по себе никак не помогает нам принимать решения. Допустим, что журналист решил подать в отставку после смены редакционной политики издания. Обозначим через Р высказывание «я не согласен с новой политикой редакции». Следовательно, классическое решение будет выглядеть так: «Если Р истинно, я ухожу» и «Если Р ложно, я остаюсь». Так как любое решение всегда сопровождается множеством тонкостей, журналист с радостью согласился бы иметь возможность выбора из трех вариантов.

Но как в этом случае следует понимать значение «возможно»? Если Р возможно, то нужно уходить в отставку или оставаться? Что отделяет одно решение от другого? Если мы хотим, чтобы наша логика позволяла принимать подобные решения, необходим более высокий уровень точности.

И здесь на сцену выходит профессор Калифорнийского университета в Беркли Лотфи Заде, который в 1965 году предположил, что значение принадлежности элемента множеству или значение истинности высказывания может описываться любым числом, лежащим на интервале от 0 до 1. Таким образом, игроки в Scattergories могут установить, что правильными ответами будут, например, только те, что принадлежат рассматриваемому семантическому полю более чем на 0,6, а журналист может решить уйти в отставку, если степень его несогласия с новой редакционной политикой будет превышать, допустим, 0,45. Заде обозначил новые множества английским словом fuzzy , которое можно перевести как «нечеткое, не имеющее четко обозначенных пределов». Следовательно, на вопрос о принадлежности элемента нечеткому множеству существует бесконечно много ответов.

Создатель нечеткой логики Лотфи Заде источник Вольфганг Хюнше Читатель - фото 72

Создатель нечеткой логики Лотфи Заде

(источник: Вольфганг Хюнше).

Читатель, возможно, поддастся искушению интерпретировать нечеткие множества в терминах теории вероятностей. Возможно, в этом случае объяснение станет более понятным, но говорить, что степень принадлежности элемента к множеству является вероятностью того, что он принадлежит к этому множеству, некорректно — это идет вразрез с духом нечеткой логики, предложенной Заде. Посмотрим, что происходит, когда мы бросаем в воздух монету. Мыс детства знаем, что вероятность выпадания решки равна 50 %, и это означает, что если мы подбросим монету много раз, например 10 тысяч, то примерно в половине случаев выпадет орел, в половине — решка. Но результат каждого броска будет единственным: орел или решка. Вероятность, по меньшей мере в упрощенной трактовке, отражает ограниченность наших знаний о ситуации: если бы нам с абсолютной точностью была известна сила, с которой мы подбросили монету, если бы мы могли уподобиться богу Эолу и повелевать ветрами, то смогли бы с точностью предсказать результат броска монеты. Это означает, что глубинный принцип, лежащий в основе теории вероятностей в ее простейшем понимании, совпадает с принципом классической логики, в то время как в мире нечетких множеств при броске монеты может выпасть решка, скорее решка, чем орел, скорее орел, чем решка, орел или любое из промежуточных значений, выраженных с бесконечной точностью.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Хавьер Фресан читать все книги автора по порядку

Хавьер Фресан - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Том. 22. Сон разума. Математическая логика и ее парадоксы отзывы


Отзывы читателей о книге Том. 22. Сон разума. Математическая логика и ее парадоксы, автор: Хавьер Фресан. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x