Пере Грима - Том13. Абсолютная точность и другие иллюзии. Секреты статистики

Тут можно читать онлайн Пере Грима - Том13. Абсолютная точность и другие иллюзии. Секреты статистики - бесплатно полную версию книги (целиком) без сокращений. Жанр: Математика, издательство «Де Агостини», год 2014. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Том13. Абсолютная точность и другие иллюзии. Секреты статистики
  • Автор:
  • Жанр:
  • Издательство:
    «Де Агостини»
  • Год:
    2014
  • Город:
    Москва
  • ISBN:
    978-5-9774-0706-9
  • Рейтинг:
    4.5/5. Голосов: 81
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Пере Грима - Том13. Абсолютная точность и другие иллюзии. Секреты статистики краткое содержание

Том13. Абсолютная точность и другие иллюзии. Секреты статистики - описание и краткое содержание, автор Пере Грима, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Статистика — наука, которая кажется знакомой, ведь мы привыкли слышать упоминания о ней в СМИ. Иногда к ней относятся несерьезно, потому что статистические прогнозы не всегда сбываются. Однако этот факт не отменяет чрезвычайной важности статистических исследований. Цель статистики — получить знания объективным способом на основе наблюдений и анализа реальности. В этой книге затронуты некоторые наиболее интересные аспекты статистики, например, вопросы о том, как провести сбор данных и как представить информацию с помощью графиков. Читатель совершит экскурс в теорию вероятностей, а также узнает о статистических исследованиях, предвыборных опросах и о том, какие рассуждения лежат в основе всех статистических тестов.

Том13. Абсолютная точность и другие иллюзии. Секреты статистики - читать онлайн бесплатно полную версию (весь текст целиком)

Том13. Абсолютная точность и другие иллюзии. Секреты статистики - читать книгу онлайн бесплатно, автор Пере Грима
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Портрет Гауссана банкноте в 10 немецких марок В центре изображена диаграмма - фото 56

Портрет Гауссана банкноте в 10 немецких марок. В центре изображена диаграмма нормального распределения.

Говоря об истоках современной статистики, следует упомянуть имя бельгийского ученого Адольфа Кетле(1796–1874) , который в XIX веке провел множество исследований, стремясь обнаружить статистические закономерности, которым подчиняется число преступлений, количество новорожденных, умерших и так далее. В поиске данных, подчиняющихся нормальному распределению, его ждал неожиданный сюрприз: в шотландском журнале были опубликованы данные о росте и охвате грудной клетки более чем 5000 солдат из различных шотландских полков. Эти данные подчинялись тому же закону, что и ошибки астрономических наблюдений.

Адольф Кетле один из крупнейших статистиков XIX века По словам самого Кетле - фото 57

Адольф Кетле, один из крупнейших статистиков XIX века.

По словам самого Кетле, «если неподготовленный человек измерил бы одного солдата 5738 раз, то результаты не распределились бы столь равномерно… как результаты 5738 измерений шотландских солдат. Если бы нам представили два ряда чисел, не снабдив их какими-либо комментариями, мы бы могли с уверенностью определить, какой ряд чисел соответствует результатам измерений 5738 разных солдат, а какой получен в результате неумелых измерений единственного солдата».

* * *

ЗАКОН ЭПОНИМОВ СТИГЛЕРА

Многие законы, теоремы, заболевания, научные открытия и постоянные носят имена их первооткрывателей. Так, известны болезнь Альцгеймера, постоянная Эйлера, великая теорема Ферма, комета Галлея и колокол Гаусса. Название события или закона по имени человека называется эпонимом.

Стивен Стиглер, преподаватель статистики Чикагского университета и известный историк статистики, открыл закон, который вкратце звучит так: «Ни одно открытие не носит имя того, кто в действительности его совершил». Если говорить об упомянутых нами примерах, то болезнь Альцгеймера, названная в честь Алоиса Альцгеймера, была описана до него минимум пятью учеными.

Постоянная Эйлера была открыта Якобом Бернулли, великая теорема Ферма в действительности не теорема, а гипотеза Ферма, а доказал ее Эндрю Уайлс в 1995 году. Комета Галлея была известна астрономам еще до Рождества Христова, хотя именно Эдмунд Галлей вычислил ее орбиту и предсказал дату ее возвращения. Если говорить о статистике, то нормальное распределение и диаграмма в форме колокола были открыты и подробно описаны не Гауссом, а французским математиком Абрахамом де Муавром, который опубликовал свои труды по этой теме в 1733 году, почти на 80 лет раньше Гаусса.

Это не означает, что одним ученым незаслуженно достаются лавры других. Некоторые совершают важный вклад в науку или объясняют уже открытое, но не очень известное явление, и по этой причине имена этих ученых остаются в истории. Профессор Стиглер опубликовал статью, посвященную этой теме, но он был не первым: до него об этом писали многие другие ученые, в частности Роберт Мертон, которого нередко цитирует Стиглер. Получается, что закон Стиглера подчиняется сам себе.

Портрет Абрахама де Муавра который открыл так называемый колокол Гауссаза - фото 58

Портрет Абрахама де Муавра, который открыл так называемый колокол Гауссаза много лет до этого знаменитого немецкого математика.

* * *

Живая гистограмма Каждый человек стоит в колонне соответствующей его росту - фото 59

«Живая» гистограмма. Каждый человек стоит в колонне, соответствующей его росту.

(источник: Эдвард Тафти. Наглядное отображение количественной информации. Цитируется работа Brian L. Joiner«Living Histograms», опубликованная в 1975 году в журнале International Statistical Review.)

Есть и еще одна причина, по которой нормальное распределение играет столь значительную роль. Очень часто в статистических исследованиях основное внимание уделяется средним значениям: анализируется средняя урожайность в зависимости от использованного удобрения, среднее значение выборки сравнивается с предполагаемым средним значением генеральной совокупности и так далее. Средние значения варьируются в зависимости от того, каким образом была взята выборка. Их вариацию на практике можно описать с помощью закона нормального распределения, даже если исходные данные генеральной совокупности не подчиняются этому закону. Например, число очков, выпадающее при броске игральной кости, совершенно не подчиняется закону нормального распределения. Это дискретное распределение с шестью возможными значениями: 1, 2, 3, 4, 5 и 6. Вероятность выпадения каждого из них одинакова. Если мы бросаем два кубика и анализируем среднее число выпавших очков, то частота выпадения различных средних значений уже не будет одинаковой.

Наиболее вероятно, что среднее значение будет равно 3,5. Если мы бросаем четыре кубика, то столбиковая диаграмма, представляющая вероятность возможного среднего числа выпавших очков, будет напоминать колокол Гаусса. Если мы будем бросать 10 кубиков, что равносильно взятию выборки величиной 10, то на диаграмме будет очевидно вырисовываться колокол Гаусса. Таким образом, распределение средних значений подчиняется нормальному закону.

Распределение средних значений стремится к нормальному хотя исходные значения - фото 60

Распределение средних значений стремится к нормальному, хотя исходные значения не подчиняются нормальному закону.

Тем не менее хотя этот закон распределения встречается очень часто, название «нормальный» — не самое удачное: можно подумать, что остальные чем-то необычны. Однако это название используется повсеместно, при этом некоторые предпочитают назвать его гауссовым распределением.

Если исходные данные по своей природе подчиняются нормальному закону (это также можно проверить графически или с помощью тестов), то их распределение полностью описывается всего двумя величинами: средним арифметическим, которое определяет центр колокола Гаусса, и среднеквадратическим отклонением, которое определяет форму колокола.

Среднее значение и среднеквадратическое отклонение две величины - фото 61

Среднее значение и среднеквадратическое отклонение — две величины, характеризующие нормальное распределение.

Если вес мешков с сахаром подчиняется нормальному закону, среднее значение равно 1000 г, среднеквадратическое отклонение — 5 г, то можно рассчитать, сколько мешков будут иметь вес свыше 1010 г, сколько — от 995 до 1010 г или менее 995 г. До недавнего времени для этого требовалось выполнять расчеты и сверяться со специальными таблицами (которые до сих пор включаются в некоторые учебники по статистике), но сегодня все расчеты можно выполнить автоматически с помощью электронных таблиц Excel . Например, вероятность того, что мешок сахара весит меньше 995 г, равна

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Пере Грима читать все книги автора по порядку

Пере Грима - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Том13. Абсолютная точность и другие иллюзии. Секреты статистики отзывы


Отзывы читателей о книге Том13. Абсолютная точность и другие иллюзии. Секреты статистики, автор: Пере Грима. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x