Ли Ноу - Эгоистичная митохондрия. Как сохранить здоровье и отодвинуть старость
- Название:Эгоистичная митохондрия. Как сохранить здоровье и отодвинуть старость
- Автор:
- Жанр:
- Издательство:Питер
- Год:2020
- Город:Санкт-Петербург
- ISBN:978-5-4461-1021-6
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Ли Ноу - Эгоистичная митохондрия. Как сохранить здоровье и отодвинуть старость краткое содержание
В нашем организме работают крошечные «энергетические станции» — митохондрии. Именно они отвечают за наше здоровье и отличное самочувствие. Когда они работают хорошо, мы не испытываем недостатка в энергии. А когда плохо — страдаем от заболеваний. Доктор Ли Ноу открывает тайну: заболевания, которые кажутся не связанными между собой на первый взгляд: диабет, рак, шизофрения, хроническая усталость, болезнь Паркинсона и другие — имеют общую природу.
Сегодня нам известно, как улучшить работу митохондрий, обеспечивающих организм энергией на 90 %. В этой книге вас ждет актуальная информация о питании, образе жизни, кетогенной диете и добавках, которые возвращают здоровье митохондриям, а следовательно, и нам.
Эгоистичная митохондрия. Как сохранить здоровье и отодвинуть старость - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Представим на мгновение, что все гены находятся в ядре. После сигнала о «наступлении» свободных радикалов ядро посылает приказ об ускорении производства комплексов IV. Затем оно метит новорожденные белки с помощью других белков для того, чтобы они могли найти путь обратно в митохондрию. Однако все, чем могут помочь метки, — направить комплексы IV к митохондриям без знания о том, какие именно из потенциальных пунктов назначения нуждаются в них. Это похоже на ситуацию, при которой вы посылаете письмо другу в другой город без указания адреса. Вряд ли такое письмо дойдет до вашего друга. Кроме того, учитывая тот факт, что митохондрии находятся в состоянии постоянной турбулентности (они могут разрушаться, делиться на две или соединяться в одну), система не была бы особенно эффективной, даже если бы ядро передавало новым комплексам IV точный адрес их митохондрий: на момент прибытия к цели этот адрес вполне может исчезнуть!
Итак, в нашей гипотетической ситуации новые комплексы IV равномерно распределились бы среди всей тысячи находящихся в клетке митохондрий. В результате действительно нуждающаяся в них митохондрия, которая и посылала изначальный запрос, не получает нужного количества комплекса IV, а остальные получают ненужные им белки (и, соответственно, отправляют в ядро сообщение о прекращении синтеза комплексом IV). Мораль этого мысленного эксперимента такова: если митохондрии не контролируют собственную судьбу, то вся клетка неизбежно будет испытывать трудности с производством энергии.
Теперь рассмотрим другой сценарий, при котором гены, синтезирующие комплекс IV, находятся в митохондрии (как это и происходит в реальности). В этом случае сигнал о взрывном увеличении числа свободных радикалов и необходимости синтеза комплексов IV поступает прямо в митохондриальную ДНК, которая находится в непосредственной близости от источника сигнала (ответ приходит очень быстро). Собственные гены митохондрии инструктируют ее же рибосомы синтезировать больше комплексов IV, которые немедленно инкорпорируются в ЭТЦ, устраняя заторы в цепи переноса электронов и восстанавливая нормальный процесс окислительного фосфорилирования. Соответственно, если (когда) идет сигнал об остановке синтеза комплексов IV, он не выходит за пределы митохондрии, а реакция на него мгновенна.
Такие быстрые и локализованные процессы протекают в каждой из тысячи митохондрий нашей клетки: часть из них нуждается в новых комплексах I, часть — в новых комплексах III, а части нужно понизить протонный градиент. Поэтому, как бы дорого клетке ни обходилось содержание десятков тысяч копий митохондриальной ДНК, альтернатива окажется гораздо более затратной и, более того, опасной.
Давайте еще раз углубимся в дебри фундаментальной науки. Комплексы ЭТЦ состоят из большого количества отдельных белковых субъединиц, и не все эти субъединицы кодируются мтДНК. Из 46 субъединиц комплекса I, 4 субъединиц комплекса II, 11 субъединиц комплекса III и 13 субъединиц комплекса IV (всего 74 белковых субъединицы) только 13 синтезируются митохондриальной ДНК. Остальные все-таки кодируются ядерной ДНК. Отсюда следует, что комплексы ЭТЦ представляют собой микс белков, кодируемых двумя геномами.
Этот факт вновь заставляет нас задать вопрос: как митохондрии, сохранившие контроль только за частью генов, необходимых для производства комплексов ЭТЦ, контролируют свою судьбу? Данные современных научных исследований говорят о том, что комплексы ЭТЦ собирают себя вокруг некоторого количества критически важных белковых субъединиц. Эти субъединицы укореняются во внутренней мембране митохондрии и начинают работать в качестве магнита, притягивающего к себе остальные субъединицы в соответствии с определенной структурой. К счастью, митохондриальная ДНК кодирует именно базовые субъединицы, и, стало быть, митохондрии могут регулировать количество создаваемых комплексов ЭТЦ.
В силу того что клетка обладает множеством митохондрий (как мы помним, в некоторых клетках их сотни, а в других — тысячи), общее количество укореняемых во внутренней мембране базовых субъединиц остается приблизительно одним и тем же. Зеркально стабильной является и работа ядерной ДНК, а также общая скорость транскрипции, что позволяет каждой конкретной митохондрии контролировать скорость окислительного фосфорилирования в своих ЭТЦ, тогда как яДНК контролирует скорость производства энергии в клетке как целостной системе.
Однако мы не можем игнорировать тот факт, что все белковые субъединицы комплекса II (напоминаю, что их всего четыре) кодируются ядерной ДНК. Тем не менее это обстоятельство не отменяет приведенных выше фактов, потому что как комплекс I, так и комплекс II передают электроны комплексу III. Митохондрия может контролировать скорость окислительного фосфорилирования в своих ЭТЦ, управляя только синтезом комплексов I, III и IV. Комплекс II — единственный из всех переносчиков электронов, не выполняющий функцию протонного насоса. Из этого мы можем заключить, что в какой-то момент на длящемся миллиарды лет пути эволюции гены всех четырех субъединиц комплекса II были переданы в клеточное ядро, чтобы хотя бы немного облегчить генетическое бремя митохондрии и повысить ее энергетическую эффективность.
Мутации митохондрий: начало конца
Со временем мутации мтДНК накапливаются. Речь идет о безвозвратной потере нормальной последовательности ДНК, которая после этого кодирует дефектные белки, не выполняющие жизненно важные для клетки функции.
Если мутации затрагивают любой из белков в митохондриальной ЭТЦ, то скорость появления свободных радикалов возрастает и ситуация может быстро выйти из-под контроля. К сожалению, преимущество находится на стороне супероксидов, а они активно разрушают гены составляющих ЭТЦ белков. Это обусловлено тем, что мтДНК расположена рядом с участками особенно интенсивной генерации свободных радикалов. Кроме того, в отличие от ядерной ДНК, митохондриальная ДНК не защищена слоем гистонов; ее восстановительные механизмы очень несовершенны, и она не обладает «мусорной» ДНК (гены плотно упакованы рядом друг с другом, и поэтому любая мутация оказывает отрицательный эффект на всю микросистему). Разрушение входящих в мтДНК генов — лишь дело времени, а это неизбежно ведет к нарушению функционирования ЭТЦ и окислительного фосфорилирования.
На первый взгляд кажется, что скорость утечки свободных радикалов из ЭТЦ соответствует скорости клеточного дыхания, но это не так. Конечно, потребность в энергии и ее потреблении, работа разобщающих белков и другие переменные, привязанные к скорости клеточного дыхания, оказывают влияние на скорость выделения свободных радикалов, но в конечном счете она зависит от доступности электронов (и кислорода).
Читать дальшеИнтервал:
Закладка: