Дэвид Кристиан - Большая история [С чего все начиналось и что будет дальше]
- Название:Большая история [С чего все начиналось и что будет дальше]
- Автор:
- Жанр:
- Издательство:Литагент Аттикус
- Год:2018
- Город:Москва
- ISBN:978-5-389-16529-8
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Дэвид Кристиан - Большая история [С чего все начиналось и что будет дальше] краткое содержание
Начиная с того, что рождение Вселенной – это такое же чудо, как и все остальное в современной истории происхождения мира, вместе с автором вы проследите увлекательные этапы появления и усложнения элементов нашего мироздания, логику их совершенствования – и риски разрушения.
Большая история [С чего все начиналось и что будет дальше] - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
В 1952 году, желая продемонстрировать это, молодой химик, магистрант Чикагского университета Стэнли Миллер, создал лабораторную модель атмосферы молодой Земли, поместив воду, аммиак, метан и водород в замкнутую систему колб и трубок. Он подогрел смесь и стал пропускать через нее электрические разряды (лабораторный аналог вулканов и электрических бурь), чтобы создать энергию активации. Через несколько дней Миллер обнаружил розоватый компот из аминокислот. Теперь нам известно, что другие простые органические молекулы, включая фосфолипиды, тоже могут образовываться в такой среде. Основной результат Миллера считается верным и сегодня, хотя мы знаем, что на ранних этапах в атмосфере преобладали не метан и водород, а водяной пар, углекислый газ и азот.
С тех пор выяснилось, что такие молекулы образуются даже в менее благоприятных химических условиях межзвездного пространства, так что множество простых органических молекул могло прибыть на Землю уже в готовом виде, на кометах и астероидах. Например, Мурчисонский метеорит, который упал на Землю близ деревни Мурчисон в Австралии в 1969 году, содержал аминокислоты и некоторые химические основания, встречающиеся в ДНК. Такие метеориты в начале истории Земли падали гораздо чаще, чем теперь, поэтому можно предположить, что молодая планета уже была засеяна многими веществами, послужившими сырьем для жизни, и сама была вполне способна производить их.
Но большинство молекул в клетках, например белки или нуклеиновые кислоты, гораздо сложнее этих простых молекул. Они состоят из полимеров, длинных, хрупких молекулярных цепочек, а формировать полимеры непросто. Для этого нужно точное количество энергии активации и условия, которые подтолкнули бы молекулы друг к другу определенным правильным образом. Среда, в которой на молодой Земле могли возникнуть нужные условия, чтобы связать цепочки полимеров, встречается в глубоководных гидротермальных источниках, где сквозь дно океана просачиваются горячие вещества из недр Земли. Эти места были защищены от солнечной радиации и жестоких бомбардировок, которые случались на поверхности. Кроме того, здесь было много воды, встречались разнообразные химические элементы и градиенты тепла и кислотности – ведь горячая, химически богатая магма в этих местах проникала в холодные воды океана. Особенно многообещающая среда формируется вблизи щелочных источников, открытых лишь недавно, в 2000 году, а пористые породы, которые здесь образуются, могут служить миниатюрными убежищами для химических экспериментов, подобно колбам и трубочкам Миллера. В таких местах встречаются даже глинистые поверхности с правильными молекулярными структурами, которые могли сыграть роль физических или электрических лекал, чтобы выстроить атомы упорядоченным образом и заставить их оставаться неподвижными, пока те образуют цепочки, подобные полимерным.
От химического богатства к жизни. «Лука», последний универсальный общий предок
Жизнь появилась в начале истории планеты Земля, а это говорит о том, что создавать простые ее формы может быть не так уж сложно, если действуют необходимые условия Златовласки. Однако точно определить, когда именно она возникла, трудно, потому что первые организмы жили более 3 млрд лет назад и имели микроскопические размеры, а породы, где они были погребены, уничтожены эрозией. На данный момент самое надежное непосредственное свидетельство о первых формах жизни на Земле – это микроскопические ископаемые останки, найденные в отдаленном регионе Пилбара в Западной Австралии в 2012 году. По-видимому, бактерия, которой они принадлежат, жила около 3,4 млрд лет назад [65] Peter Ward and Joe Kirschvink . A New History of Life: The Radical New Discoveries About the Origins and Evolution of Life on Earth. London: Bloomsbury Press, 2016. P. 65–66.
. В сентябре 2016 года в журнале Nature вышла статья о находках, сделанных в Гренландии, возраст которых составляет 3,7 млрд лет и которые напоминают подобные кораллам строматолиты [66] Allen P. Nutman et al . Rapid Emergence of Life Shown by Discovery of 3,700-Million-Year-Old Microbial Structures // Nature 537, September 22, 2016). P. 535–538, doi:10.1038/nature19355.
. Если это – то, что многие думают, то жизнь, должно быть, начала развиваться на миллионы лет раньше, чем считалось прежде, и должна была появиться вскоре после окончания Поздней тяжелой бомбардировки, примерно 3,8 млрд лет назад. А в начале 2017 года, опираясь на данные об ископаемых образованиях, найденных в северном Квебеке, ученые заявили, что, возможно, это произошло целых 4,2 млрд лет назад. Придется подождать, чтобы увидеть, выдержат ли эти заявления проверку временем [67] Nadia Drake . This May Be the Oldest Known Sign of Life on Earth // National Geographic, March 1, 2017. URL: www.news.nationalgeographic.com/2017/03/oldest-life-earth-iron-fossils-canada-vents-science
.
Пока что биологи не могут до конца объяснить, как возникли первые живые организмы. Но они понимают, что происходило на многих этапах этого процесса.
Биологи не знают точно, как выглядел первый живой организм, но они назвали его «Лука» (или LUCA, от английского словосочетания last universal common ancestor – последний универсальный общий предок). «Лука» точно жил раньше самых ранних форм жизни, найденных на данный момент, и у него было много общего с современными прокариотами – одноклеточными организмами, чей генетический материал не защищен ядром. Сегодня прокариоты составляют два из трех больших доменов живых существ – бактерии и археи (третий домен, к которому относится и наш вид, называется «эукариоты»).
Мы никогда не найдем останков «Луки», потому что на самом деле он – гипотетическое существо, некий собирательный образ первого живого организма, что-то вроде фоторобота сбежавшего преступника. И все же такой портрет может помочь понять, с чего началась жизнь.
«Лука» был вроде бы и живым, но не совсем, он относился к категории своеобразных зомби, где-то между живой и неживой природой. Понять это проще, чем кажется. Вирусы не совсем живые, потому что они отвечают не всем условиям нашего определения живых организмов. У них нет метаболизма, а их мембраны чрезвычайно хрупкие, так что не вполне ясно, можно ли считать их клетками. Это почти все равно что единица генетического материала, которая может прицепиться к более сложному организму. Вирус проникает в другую клетку, захватывает ее механизмы обмена веществ и использует их, чтобы создавать копии самого себя. Когда вы болеете гриппом, вирус откачивает энергию из ваших метаболических труб. Но если ему не удается найти клетку, которую можно захватить, вирус останавливает работу и ждет в состоянии анабиоза. Некоторые клетки обитают в камнях, и у них крайне медленный метаболизм; они живут за счет крошечных порций воды и питательных веществ. Они могут надолго полностью замереть, как рок-гитарист Хотблэк Дезиато из романа Дугласа Адамса «Ресторан “У конца Вселенной”», который целый год оставался мертвым, чтобы уйти от налогов. То, от чего пытаются уйти такие организмы, – это, конечно, налог энтропии на сложность. Возможно, «Лука» обитал в такой же сумеречной зоне.
Читать дальшеИнтервал:
Закладка: