Алевтина Царегородцева - Гипертоническая болезнь как болезнь психосоматическая. Вегетативный и эмоциональный гомеостаз, этапы становления болезни в онтогенезе
- Название:Гипертоническая болезнь как болезнь психосоматическая. Вегетативный и эмоциональный гомеостаз, этапы становления болезни в онтогенезе
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:9785449054616
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Алевтина Царегородцева - Гипертоническая болезнь как болезнь психосоматическая. Вегетативный и эмоциональный гомеостаз, этапы становления болезни в онтогенезе краткое содержание
Гипертоническая болезнь как болезнь психосоматическая. Вегетативный и эмоциональный гомеостаз, этапы становления болезни в онтогенезе - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
В основном труде К.М.Быкова (1949) о кортико-висцеральных соотношениях «Кора головного мозга и внутренние органы» говорится, что кортикальные рефлексы обеспечивают сложнейшую реакцию организма, вовлекая в работу не только одну систему органов, но весь организм в целом. В повседневной жизни в спокойном состоянии кора головного мозга непосредственно не вмешивается в регуляцию висцеральных функций, регуляция которых осуществляется вегетативной (поистине автономной) нервной системой (В.Н.Черниговский, 1969). Важнейшая роль коры больших полушарий, по выражению И.П.Павлова, «органа высшего уравновешивания организма со средой» состоит в постоянном приспособлении организма к непрерывно меняющимся условиям существования и, прежде всего, к условиям социальной среды.
Участие коры головного мозга формируется на основе специфических восходящих активирующих влияний соответствующих гипоталамо-ретикулярных центров. А она, в свою очередь, существенно влияет на функции подкорковых образований. Кора больших полушарий может оказывать неспецифическое тормозное или возбуждающее действие практически на любую функцию кровообращения. В наибольшей степени влияние коры отражается на тех изменениях кровообращения, которые рассматриваются как составной компонент сложных поведенческих реакций (Г.П.Конради, В.В.Орлов, 1975).
Управление кровообращением в филогенезе возникло в неразрывной связи с управлением двигательным аппаратом и нельзя считать случайным необычайно тесное совмещение на довольно ограниченном пространстве коры больших полушарий представительство соматосенсорных систем и систем, регулирующих кровообращение. При электрической стимуляции сенсомоторной и височной долей коры возникают вазомоторные эффекты как прессорного, так и депрессорного характера. Реакции, регистрируемые с височного сосудодвигательного поля, проявляются падением артериального давления, с сенсомоторного поля – только прессорные ответы. Широкое корковое представительство имеет афферентная система блуждающего нерва (С.С.Мусящикова, В.Н.Черниговский, 1973). В головном мозге, в пределах надсегментарных структур нет специфических корковых, подкорковых, диэнцефальных структур, влияющих на уровень артериального давления. Вовлечение в патологический процесс различных отделов головного мозга сопровождается неодинаковыми по интенсивности и характеру вегетативными сдвигами, обеспечиваемыми уровень артериального давления.
Механизмы, поддерживающие гомеостаз, совершенно отработаны эволюцией. Наиболее древние механизмы регуляции системы кровообращения занимают низшую ступень иерархии в вегетативной интеграции. Периферический спинальный отдел осуществляет наиболее простые вегетативные реакции на уровне отдельных сегментов. Стволовой уровень реализует внутрисистемную координацию деятельности сердечно-сосудистой системы посредством прессорной и депрессорной зон. Депрессорные реакции являются следствием тормозного влияния их на симпатические вазоконстрикторные нейроны (В.М.Хаютин, 1964). В регуляции сосудистого тонуса на более высокой иерархической ступени находится гипоталамус. Его называют высшим центром симпатической нервной системы. И на подкорковом уровне он доминирует в управлении сердечно-сосудистой системой. Гипоталамо-диэнцефальный отдел приспосабливает деятельность системы кровообращения к изменяющимся условиям внешней и внутренней среды. Филогенетически наиболее древние химические и физические механизмы регуляции кровообращения остаются фундаментальными, а в некоторых ситуациях и решающими (Л.А.Орбели, 1961, Г.П.Конради, 1975). Регуляция кровообращения в организме осуществляется надсегментарными отделами вегетативной нервной системы. Адекватность функционирования системы кровообращения зависит от характера мозгового гомеостаза. Активирующая стволовая ретикулярная система мозга обеспечивает эрготропные (симпатические) влияния. В восходящем направлении эти влияния проявляются десинхронизирующим снижением альфа-ритма на ЭЭГ. В нисходящем направлении – повышением артериального давления, частоты сердечных сокращений, повышением моторной активности. Это целостная эрготропная реакция, необходимая для активного целесообразного поведения.
Синхронизирующие системы ствола мозга и зрительного бугра обеспечивают трофотропные (парасимпатические) влияния. Снижается артериальное давление, частота сердечных сокращений, двигательная активность, появляется психическая заторможенность. Регулирующее влияние обеих систем распространяется на эндокринный аппарат организма. Доминирование данной функциональной системы в настоящий момент времени определяется её биологической и социальной значимостью.
Регуляторные воздействия в структурах мозга осуществляются нейротрансмиттерами (transmittо – пересылать, передавать, переправлять). Синтез их осуществляется из аминокислот – предшественников. Прекурсором норадреналина и дофамина является тирозин, а серотонина – триптофан. Их накопление в синаптических пузырьках (везикулах), выброс в синаптическую щель в связи с приходом нервного импульса, обратный захват пресинаптическим окончанием и разрушение осуществляется ферментными системами. Нейротрансмиттеры (медиаторы) являются ключевыми информационными молекулами в мозге и в периферической нервной системе. Одни нервные клетки приобретают способность синтезировать их, другие – реагировать на них специфическими реакциями (S.Retj, 1967, S.Robertis 1967, Л.Н Зефиров, 1975). Нейротрансмиттеры синаптической передачи (мессенджеры), – это химические соединения, которые служат средством передачи информации от нейрона к любым клеткам: к другому нейрону, к мышечной клетке, к клетке железы или к другим видам клеток. Характер импульсации имеет специфический характер в зависимости от различных биологических форм деятельности (П.К.Анохин, 1968). Это может быть информация о цели, управляющая информация, информация о среде, о состоянии объекта управления, о результатах управления (Е.В.Трифонов 2009). Клетка – мишень имеет специфичные к каждому из нейромедиаторов биохимические рецепторы. Нейромедиатор, взаимодействуя со своим рецептором, образует комплекс «медиатор-рецептор», который может непосредственно или через цепь посредников специфически влиять на интенсивность тех или иных процессов метаболизма клетки, лежащих в основе её свойств и функций.
О. Леви, Дж. Эллиот, Г. Дейл (2001) доказали, что передача сигнала в нейроэффекторных соединениях осуществляется освобождением ацетилхолина или норадреналина из нервных окончаний. Одни нейромедиаторы через деполяризующие синапсы повышают возбудимость клетки-мишени, другие через гиперполяризацию синапса оказывают тормозные влияния (W.M.Gowan et al. 2001). К настоящему времени доказано, что наиболее важными медиаторными свойствами обладают ацетилхолин, норадреналин, серотонин, дофамин, глутамат, ГАМК, эндорфины, энкефалины. Норадреналин и дофамин составляют группу катехоламинов, а вместе с серотонином – группу моноаминов. Дофамин, норадреналин, серотонин, ацетилхолин называют» классическими», «традиционными» медиаторами (А.Л.Зефиров, 2005). В зависимости от вида нейромедиаторов, синтезируемых и выделяемых пресинаптическими терминалями аксонов различают нейроны, синапсы и рецепторы холинэргические, адренергические, дофаминергические. серотонинергические. Почти все биогенные амины, включая дофамин, норадреналин, серотонин инактивируются обратным захватом из синаптической щели в нервное окончание (Л.Р.Зефиров и соавт. 1975, K. Abe, H.Kimura, 1996, J.R.Cooper et al. 1996). Различные взаимоотношения между уровнем медиаторов обусловливают различные функциональные состояния мозга. Таким образом, функции мозга можно определить как выражение различных химических и физических процессов, происходящих в организме. От уровня активности, количественного соотношения, от степени ингибиции или активации той или иной медиаторной системы в подкорковых образованиях мозга зависит функциональное состояние вегетативной нервной системы, эмоциональный гомеостаз организма.
Читать дальшеИнтервал:
Закладка: