Роман Умнов - Современная парадигма в медицине. Позитивная неврология
- Название:Современная парадигма в медицине. Позитивная неврология
- Автор:
- Жанр:
- Издательство:Литагент «Нордмедиздат»7504ac56-b368-11e0-9959-47117d41cf4b
- Год:2014
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Роман Умнов - Современная парадигма в медицине. Позитивная неврология краткое содержание
В данной публикации отражен творческий путь развития отечественной и зарубежной неврологии, опыт четырех поколений неврологов ХХ-XXI веков и новые позитивные перспективы в неврологии.
Позитивная неврология – это современная парадигма в медицине, которая расширяет научно-практический поиск с позиций мультидисциплинарного подхода к раскрытию болезней нервной системы с высокотехнологической диагностикой и лечением.
Основные позиции данной концепции изложены в авторской монографии «Позитивная неврология» 2013 г.
Современная парадигма в медицине. Позитивная неврология - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Цитоархитектоника коры головного мозга
Анатомически кора головного мозга представляет собой пластину серого вещества, выстилающую наружную поверхность полушарий. Складчатость коры обусловливается наличием большого количества мозговых извилин, отделенных друг от друга бороздами. Общепризнанно, что кора головного мозга – наиболее поздний по развитию и наиболее совершенный отдел центральной нервной системы. Локализационный и эквипотенциальный подход к изучению нарушения высших корковых функций (речи, гнозиса и праксиса) расширил познания в понимании сущности функций нервной системы.
ХХ век ознаменован изучением цитоархитектоники коры головного мозга. Ученые Бец, Бродманн, Фохт, Экономо, Филимонов явились основоположниками картирования головного мозга, и в последней редакции цитоархитектоники было принято, что кора головного мозга может быть условно поделена на 52 поля.
Принятая цитоархитектоника коры головного мозга так и не смогла разрешить спорные вопросы о корковой локализации функций. Клиницисты чаще решают задачи, исходя из выявления функциональных расстройств, которые имеют четкие закономерности, такие как нарушение рефлекторных, двигательных и чувствительных функций. Другие высшие корковые функции праксиса, гнозиса и речи не имеют четкого представительства в коре головного мозга.
Цитоархитектоника коры головного мозга представлена в шесть слоев: I слой – зональный (молекулярный), беден клетками, и направление этих волокон проходит тангенциально; II слой – наружный зернистый, который включает большое количество мелких зернистых нервных клеток; III слой – пирамидный, состоящий из малых и средних пирамидных клеток; IV слой – внутренний зернистый, и следует отметить, что не везде одинаково по цитоархитоническим полям расположены эти нейроны; V слой – ганглионарный, или слой больших пирамидных клеток, или их называют клетки Беца, которые впервые описал русский анатом Владимир Бец в 1874 году; VI слой – мультиформный, имеющий два подслоя – триангулярный и веретенообразный.
В головном мозге 10 000 000 нервных клеток и около 100 000 000 глиальных. В среднем головной мозг весит 1480 грамм, спинной мозг – 30 грамм.
Принято с позиций позитивизма, что в коре головного мозга находятся корковые анализаторы, которые представляют сложную морфологическую систему, но имеющие функциональное единство нейронов. Переработка информации в коре головного мозга происходит при постоянно протекающих биохимических процессах. Нервная система представляется сложной и гетерогенной организацией различных структурных элементов по сравнению с другими тканями человека.
Наряду с нейронами в нервной ткани большое значение имеют нейроглиальные клетки – астроциты, олигодендроциты, клетки эпендимы и микроглии, и вследствие морфо-функционального и метаболического взаимодействия обеспечивается в целом функциональная деятельность головного мозга. Система связей нейрон-нейроглии осуществляется через специфические образования – синапсы, обеспечивающие передачу и модуляцию сигнала с помощью химических, электрических и квантовых механизмов. Через синапсные системы осуществляются межнейрональные, нейромышечные и нейросекреторные контакты.
Функциональность нуклеиновых кислот клеток нервной системы характеризуется особенным разнообразием экспрессируемых уникальных генов, определяющих синтез большого числа нейроспецифических белков. Некоторые нейроспецифические белки вовлечены в процессы синаптической передачи, а также участвуют в формировании долговременной памяти.
Специфические липиды определяют сложность своеобразия мембран и миелина. Ганглиозиды, галактоцереброзиды, полифосфоинозитиды являются специфичными липидами, которые в других тканях обнаруживаются в ничтожных количествах.
Характерной особенностью нервной ткани является ее высокая интенсивность энергетического метаболизма, с высоким потреблением кислорода и глюкозы мозгом, обеспечивающие протекание специфических процессов, а именно, передача нервных импульсов, хранение и переработка поступающей информации, обеспечивающая интеграцию деятельности мозга. Глюкоза служит преимущественным субстратом окисления в нервной ткани, прежде всего, коры больших полушарий.
Имеет значение метаболизм аминокислот (дикарбоновые аминокислоты), которые выступают в роли нейромедиаторов или их непосредственных предшественников и участвуют в специфических альтернативных путях превращений ряда метаболитов (a-кетоглутарата, пирувата и др.), а также как регуляторные пептиды (нейропептиды) участвуют в синаптической передаче сигналов, или, как дистантные регуляторы, обеспечивают функции психосоматического уровня.
Для нервной ткани характерна отчетливая компартментализация метаболизма, а именно, пространственная разобщенность отдельных метаболических процессов в разных отделах головного мозга и субклеточных структурах нейрона, а именно в системе нейрон-нейроглия. Для метаболизма мозга характерна высокая степень автономии по отношению к другим областям организма.
Гематоэнцефалический барьер играет роль в обеспечении постоянной среды мозга, в поддержании ионного и осмотического баланса, в избирательном активном транспорте регуляторных веществ.
Перечисленные особенности биохимии нервной системы являются важнейшими, но не исчерпывающими (И. П. Ашмарин, 1996).
В настоящее время имеются исследования нейрохимических и молекулярных механизмов нейрологической памяти. Нейропсихологи стали «охотниками» за поиском фиксации следа памяти (энграммы). В процессе обучения, запоминания выявляются молекулярно-цитологические изменения в клетках центральной нервной системы, которые способны сохраняться от доли секунды до фиксации в течение всей жизни.
Нейрологическая память обладает сложной системной организацией и не имеет строгой локализации в определенных участках мозга. Энграммы фиксируются в мозге в виде изменений синаптического аппарата с проведением возбуждения по определенным нейронам.
Авторы отмечают, что при поражении гиппокампа миндалевидного комплекса и ядер средней линии таламуса могут наблюдаться нарушения выработки условных навыков и запоминания информации. Память относительно к поведенческим и психическим процессам представляется сложным процессом, касающимся организации целого мозга и при заинтересованности большого числа нейронов.
При этом надо иметь в виду, что нейрохимические перестройки затрагивают не только синаптический аппарат, но и изменяет деятельность самого нейрона.
Такие нейропептиды, как вазопрессин и фрагменты АКТГ, также стимулируют процессы, связанные с запоминанием и извлечением информации из памяти (Титов С. А., 1996).
Читать дальшеИнтервал:
Закладка: