Виктор Лёвин - Актуальность сложности. Вероятность и моделирование динамических систем

Тут можно читать онлайн Виктор Лёвин - Актуальность сложности. Вероятность и моделирование динамических систем - бесплатно полную версию книги (целиком) без сокращений. Жанр: Философия, издательство «Эдитус», Москва, год 2017. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Актуальность сложности. Вероятность и моделирование динамических систем
  • Автор:
  • Жанр:
  • Издательство:
    «Эдитус», Москва
  • Год:
    2017
  • ISBN:
    978-5-00058-502-3
  • Рейтинг:
    4/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Виктор Лёвин - Актуальность сложности. Вероятность и моделирование динамических систем краткое содержание

Актуальность сложности. Вероятность и моделирование динамических систем - описание и краткое содержание, автор Виктор Лёвин, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Исследуется проблема сложности в контексте разработки принципов моделирования динамических систем. Применяется авторский метод двойной рефлексии. Дается современная характеристика вероятностных и статистических систем. Определяются общеметодологические основания неодетерминизма. Раскрывается его связь с решением задач общей теории систем. Эксплицируется историко-научный контекст разработки проблемы сложности.

Актуальность сложности. Вероятность и моделирование динамических систем - читать онлайн бесплатно полную версию (весь текст целиком)

Актуальность сложности. Вероятность и моделирование динамических систем - читать книгу онлайн бесплатно, автор Виктор Лёвин
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Мизесовский подход предложил в качестве базисного языка язык относительных частот. В то же время Мизес высказывал убеждение, что возможен перевод в термины относительных частот большинства вероятностных высказываний, используемых в науке.

Важным пунктом этого подхода явилось утверждение о тождественности вероятности с эмпирически наблюдаемыми частотами. Поскольку же вероятность выступает как объект математики, требуются средства для перехода от вероятности к эмпирическому материалу. Мизес усматривал это средство в понятии коллектива.

Одно из центральных положений частотной теории звучало так: о вероятности можно говорить только в случае, если налицо имеется твердо определенный и отграниченный коллектив [9]. Коллектив, по Мизесу, есть некоторая безграничная последовательность экспериментов, в которой каждый ее элемент (эксперимент) либо наделен, либо не наделен каким-то определенным признаком (например, таким признаком может быть выпадение фиксированной грани игрального кубика). Причем, каждый признак должен иметь в коллективе определенную долю, которая и есть его вероятность.

Важнейшими свойствами коллектива объявлялись: существование пределов относительных частот определенных признаков, а также иррегулярность (Regellosigkeit). Первое свойство совпадает с идеей бесконечности как снятием эмпирических отклонений частот от вероятности. Второе вводится для сохранения собственно вероятностного смысла данной концепции.

Мизес руководствовался соображением, что поскольку вероятность все точнее измеряется при увеличении числа испытаний отношением m/ n (что известно было уже в классической теории из теоремы Бернулли), то в пределе она совпадает с этим отношением. В традиционном истолковании это соотношение служило выражением лишь одного из свойств вероятности. Мизес же принимал его за определение вероятности.

Доказательство существования пределов относительных частот дается им в чисто эмпирическом плане. Так, он берет пример с бросанием 2-х костей и указывает, что при достаточно большом числе бросаний можно установить постоянство первого десятичного знака в отношении. При дальнейшем увеличении числа бросаний можно установить постоянство дроби, выражающей относительную частоту, скажем, для трех десятичных знаков. Именно этот факт, по Мизесу, должен привести к мысли о сходимости относительных частот, точнее к тому, что предел относительной частоты возможен [10].

Правило иррегулярности Мизес определял следующим образом: предельное значение относительной частоты, с которым выступает в коллективе какой-либо признак, должно оставаться неизменным, если из всей последовательности произвольно выбрать любую часть и рассматривать в дальнейшем только эту часть. При этом, выбранная частичная последовательность должна быть безграничной, как и сама основная последовательность. То есть, любой признак в любой части коллектива должен иметь ту же самую долю, что и во всем коллективе [11].

В последующем было показано, что требование предела относительных частот находится в противоречии с требованием правила иррегулярности. Аргументы в этом случае таковы: Понятие предела связано с бесконечной последовательностью, которая не может быть задана актуально вследствие того, что такое задание должно производиться через общий закон образования ее членов по нумерическому признаку. Но это-то и запрещается правилом иррегулярности. В то же время из математики хорошо известно, что только в таком случае можно вести речь о строгом математическом пределе [12]. В другом месте читаем: «...самое понятие предела в его обычном понимании применимо лишь к индивидуальной, закономерно определенной последовательности. Там, где закономерностей, определяющих данную последовательность, нет и принципиально быть не может, нельзя даже ставить вопроса о существовании или несуществовании предела» [13].

Позже Мизес предлагал раскрыть коллектив не как актуальную, а становящуюся последовательность. Но, с математической точки зрения, у такой последовательности также не может быть предела.

Р. Мизес пытался уточнить определение иррегулярности, объявляя ее уже нечувствительностью не к любому закону выбора, а по отношению к счетному множеству законов, сформулированных в рамках определенной формализованной логики. Ибо, в реальной ситуации речь всегда идет о некотором конечном числе операций выбора. За пределами этой формализованной системы оказывается возможным задать явно случайную последовательность обладающую свойством коллектива, по крайней мере, в принципе [14].

Давая оценку концепции Мизеса, надо отметить: 1) Невозможность на ее основе делать определенные предсказания о течении реальных процессов. И указанное выше уточнение не снимает этой трудности, поскольку не затрагивает понятия предела. Идеализация Мизеса в этом пункте чрезвычайно нечеткая, и ее приложение к реальным испытаниям слабо обосновано. Например, согласно позиции Мизеса, мы не можем сказать хотя бы предположительно заранее, сколько раз при 1000 подбрасываний «правильной» монеты выпадет «герб». По Мизесу надо бы ответить, что возможны все числа - от 0 до 1000 раз. Реальное же испытание дает некоторое устойчивое число, вокруг которого группируются выпадения «герба». Без дополнительного постулата, как указывал А.Я.Хинчин, до произведения испытаний Мизес не может сделать никакого выбора из возможных чисел выпадения «герба». Можно лишь вычислить вероятность того, что «герб» выпадет столько-то раз[15]. 2) Учение Мизеса о вероятностях приложимо лишь к некоторому идеализированному процессу бесконечного эксперимента и неясно как его применить к реальным процессам, которые всегда конечны. 3) Проблема сложности здесь не решена.

Настаивая на эмпирическом обосновании понятия вероятности и отбрасывая классическую теорию из-за отсутствия такого обоснования, частотный подход Мизеса оказался неспособным удержать то положительное, что нес в себе классический подход. Оно состояло в следующем. Неявным образом при определении вероятности принимались во внимание определенные свойства индивидуального объекта, характеризующие набор объективных возможностей его поведения в испытании (например, однородность строения, симметрия и т.п.). Благодаря этому в известном смысле обоснованным становилось приложение классической теории к реальным сериям испытаний.

Следует заметить, что эта сторона классического подхода обычно остается в тени. Более того, вместе с принципом недостаточного основания, символизирующим субъективизм и априоризм данной концепции, отбрасывают самую идею «равновозможности» как исходный пункт истолкования вероятности. Между тем, эту концепцию, если придавать «равновозможности» объективный смысл, нельзя рассматривать как полностью преодоленный этап. Скорее правы те авторы, которые считают, что теоретическое истолкование вероятности на базе данного понятия не исчерпало себя полностью. Так, А.Я.Хинчин, разбирая в одной из своих статей пример Мизеса с неправильной костью, показывал, что противопоставление данного случая идее равновозможности не оправдано, если исходить из некоторых топологических представлений[16].

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Виктор Лёвин читать все книги автора по порядку

Виктор Лёвин - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Актуальность сложности. Вероятность и моделирование динамических систем отзывы


Отзывы читателей о книге Актуальность сложности. Вероятность и моделирование динамических систем, автор: Виктор Лёвин. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x