Герман Хакен - Тайны природы. Синергетика: учение о взаимодействии
- Название:Тайны природы. Синергетика: учение о взаимодействии
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:2003
- ISBN:5-93972-230-
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Герман Хакен - Тайны природы. Синергетика: учение о взаимодействии краткое содержание
Для самого широкого круга читателей.
Тайны природы. Синергетика: учение о взаимодействии - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Рис. 1.1. Спиралевидная туманность
Упорядоченные структуры можно обнаружить не только в космосе. Оглядитесь вокруг, и вашему взору откроется бесконечное разнообразие таких структур: приведем в качестве примера исполненную благородства форму самой обыкновенной снежинки (рис. 1.2). Живая природа вновь и вновь поражает нас своим изобилием, причем формы, в которых оно выражается, могут быть порой совершенно невероятными. На иллюстрации 1.3 вы видите увеличенное изображение глаза тропической мухи: он располагается на особом стебельке, растущем на голове мухи. Упорядоченная структура, напоминающая пчелиные соты, в высшей степени функциональна: благодаря такому строению глаза муха обладает совершенной системой кругового обзора. Гармония, присущая многим животным и растениям, часто приводит нас в восхищение. Немыслимое разнообразие форм, наблюдаемых в природе, завораживает то своей исключительной целесообразностью, то — вспомните о великолепии цветов — игривой беспечностью и причудливостью.
Рис. 1.2. Снежинка
Рис. 1.3. Глаз тропической мухи Diopsis ihoracica. Обратите внимание на гексагональную структуру поверхности глаза.
Однако в изумление нас повергают не только неподвижные структуры, подобные вышеупомянутым. Не меньший восторг могут вызвать танец, исполненный грации, или красота бега лошади. Жизнь человеческого общества тоже демонстрирует немалое разнообразие структур: как в политической (например различные формы государственного устройства), так и в чисто духовной сфере человеческой деятельности обнаруживается структурированность — в языке, в музыке и, наконец, в науке. Таким образом, мир вокруг нас изобилует всевозможными структурами: начиная с тех, которые мы встречаем в природе, и заканчивая теми, что присущи разумной жизни; мы настолько привыкли к структурам, что зачастую уже не осознаем, каким чудом является само их существование.
Люди прошлых веков воспринимали все это как проявление божественной воли и подтверждение тому — история создания нашего мира, изложенная в Ветхом Завете. Наука тоже долгое время была занята лишь вопросами строения — но не возникновения! — структур, существующих вокруг нас. Интерес к тому, каким же образом могли возникнуть все эти структурные образования, появился и окреп только в новейшее время. Если наука желает избежать необходимости всякий раз для объяснения сути вещей обращаться за помощью к сверхъестественным силам и актам творения, она первым делом должна объяснить природу самозарождения и развития структур — иными словами, суть процессов самоорганизации.
Стремление к созданию единой картины мира
Если мы, осознавая все бесконечное разнообразие окружающих нас структур, решим выяснить, как же они возникли, то окажемся перед невыполнимой, на первый взгляд, задачей. Уже попытки каким-либо образом классифицировать обнаруженные структуры потребовали (и продолжают требовать) огромных затрат времени и сил многих поколений исследователей — возможно ли пройти этот путь до конца? да и стоит ли овчинка выделки? Действительно, будь строение каждой отдельной структуры подчинено особым, свойственным ей одной, законам, нечего было бы и думать о том, чтобы описать все это в одной книге — для этого потребовалась бы целая библиотека невообразимых размеров.
Здесь на сцену выходит идея, являющаяся, собственно, движущей силой всякой науки. Наука призвана не просто собирать фактический материал, но и стремиться создать целостную картину мира, целостное мировоззрение. Особенно ярко это стремление проявляется в области естественных наук — например в физике, химии или биологии, — однако не менее известны и попытки, предпринятые философами. Все мы хорошо знаем о поисках физиками фундаментальных законов мироздания. Механика Исаака Ньютона (1643-1727) и его закон всемирного тяготения дают нам возможность описать движение планет вокруг Солнца — движение, для которого в древности не существовало единого объяснения. Благодаря Джеймсу Клерку Максвеллу (1831-1879) нам стало известно, что свет представляет собой не что иное, как электромагнитные колебания, подобные радиоволнам. Альберту Эйнштейну (1879-1955) удалось связать тяготение, пространство и время. Химик Дмитрий Иванович Менделеев (1834-1907) впервые упорядочил многообразие существующих в природе веществ, создав периодическую систему химических элементов. В современной атомной физике периодическая система Менделеева может считаться воплощением основного закона строения атомов. В биологии, в соответствии с открытыми Менделем законами, происходит передача от поколения к поколению наследственных признаков при скрещивании, к примеру, растений с различной окраской цветков. Уже в наше время были обнаружены химические механизмы такой передачи, происходящей благодаря гигантским молекулам дезоксирибону-клеиновой кислоты (ДНК).
Как показывают эти примеры (а их количество можно было бы многократно умножить), человечество неустанно ищет и находит все новые и новые законы, единые для всех происходящих в природе процессов.
В то время как явления самого разнообразного свойства усилиями ученых сводятся, наконец, воедино как проявления неких законов природы, исследователи обнаруживают совершенно новые факты, касающиеся еще более сложных явлений, и порой наука оказывается близка к полному погребению под лавиной добываемых учеными сведений. Отсюда — бесконечная «гонка», борьба между потоком новых фактов и стремлением ученых эти факты систематизировать, понять и соотнести с действием единых законов мироздания.
Анализ и синтез
Какими же, собственно, возможностями для изучения структур и протекающих в них процессов мы располагаем? Излюбленным и, пожалуй, используемым чаще прочих способом является разложение изучаемого объекта на все более мелкие составляющие. Так физик обнаруживает, что кристалл (к кристаллам мы еще вернемся в главе 3) состоит из атомов, атомы же, в свою очередь, разделяются на меньшие элементы — протоны и электроны. Одно из важнейших направлений современных физических исследований связано как раз с изучением «элементарных» частиц (кварков и глюонов), которые, вполне возможно, все еще не являются последними, «наиэлементарнейшими» частицами материи. Биолог препарирует клетки ткани, добираясь до составляющих их элементов: клеточных мембран и ядер, а затем и далее — до биомолекул. Перечень такого рода «разложений» можно дополнить примерами из других отраслей науки... да и сама наука, собственно, тоже уже «разложена» на математику, физику, химию, и т. д. — вплоть до социологии и психологии.
Читать дальшеИнтервал:
Закладка: