Валентин Асмус - ЛОГИКА

Тут можно читать онлайн Валентин Асмус - ЛОГИКА - бесплатно полную версию книги (целиком) без сокращений. Жанр: Философия, издательство ОГИЗ, год 1947. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Валентин Асмус - ЛОГИКА краткое содержание

ЛОГИКА - описание и краткое содержание, автор Валентин Асмус, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Книга использует формат FB вер. 2.1. Для полноценного воспроизведения содержимого (текст содержит таблицы) надо использовать программы чтения, поддерживающие этот формат. Это могут быть CoolReader3, FB2Edit (в режиме чтения) и др.
Предлагаемая книга представляет систематическое изложение учений логики. Она может быть использована студентами высших учебных заведений, аспирантами научно-исследовательских институтов и лицами, приступающими к самостоятельному изучению логики. Преподаватели логики в средней школе найдут в ней подробное освещение вопросов, входящих в программу их предмета, но лишь кратко излагаемых в учебниках логики для старшего класса.

ЛОГИКА - читать онлайн бесплатно полную версию (весь текст целиком)

ЛОГИКА - читать книгу онлайн бесплатно, автор Валентин Асмус
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Таким образом, закон противоречия и сам по себе и в соединении с законом исключённого третьего действительно обусловливает в умозаключении логическую связь между посылками и заключением. Но связь эта опирается также и на закон тождества . Заключение, выведенное из посылок, не могло бы быть истинным, если бы термины «бамбуки», «злаки», «цветущие колосками», появляющиеся в умозаключении каждый дважды, мыслились не в тождественном смысле, т. е. если бы в умозаключении был бы где-нибудь нарушен закон тождества. Если бы, например, под «злаками» в одной из посылок мыслилось одно содержание, а в другой — иное, то заключение об отношении между «злаками» и «цветущими колосками» из таких посылок не могло бы быть выведено. Заключение это возможно только на основе раскрытого в посылках отношения каждого из этих понятий к понятию «злаки». Но совершенно очевидно, что если понятие «злаки» в обеих посылках не тождественно, то невозможно установить посредством этого понятия никакой логической связи между понятием «бамбуки» и понятием «цветущие колосками».

Таким образом, все четыре логических закона мышления — закон тождества, закон противоречия, закон исключённого третьего и закон достаточного основания — применяются во всех умозаключениях. Без этих законов в умозаключениях не могла бы быть усмотрена логическая связь между посылками и заключением.

Всякое правильное умозаключение раскрывает для нашей мысли необходимое отношение между предметами, которые мыслятся в посылках и в выводе. Так, посылка «все злаки цветут колосками» выражает мысль о том, что свойство цветения колосками есть необходимое свойство всех злаков; поэтому все предметы, называемые злаками, необходимо входят в число «цветущих колосками» (см. рис. 34).

Рис 34 Рис 35 На этом рисунке - фото 34

Рис. 34. . . . . . . . . . . . . . . . . . . . . . . . Рис. 35

На этом рисунке объём понятия «злаки» изображён посредством круга М, объём понятия «цветущие колосками» — посредством круга Р. Из рисунка видно, что все злаки необходимо принадлежат к цветущим колосками, т. е. что все М необходимо принадлежат к Р. Посылка «все бамбуки — злаки» выражает мысль о том, что свойства злаков необходимо являются свойствами бамбуков; поэтому все предметы, называемые «бамбуками», необходимо входят в число злаков (см. рис. 35).

На этом рисунке объём понятия «бамбуки» изображён посредством круга S, объём понятия «злаки» — посредством круга М. Из рисунка видно, что все бамбуки необходимо принадлежат к злакам, т. е. что все S необходимо принадлежат к М. Сопоставляя обе эти посылки, получаем вывод: «все бамбуки цветут колосками». Вывод этот выражает мысль о том, что свойство всех злаков цвести колосками необходимо является также свойством всех бамбуков; поэтому все предметы, называемые «бамбуками», необходимо входят в число «цветущих колосками» (см. рис. 36).

Рис 36 Из этого рисунка ясно что не только все злаки необходимо цветут - фото 35

Рис. 36

Из этого рисунка ясно, что не только все злаки необходимо цветут колосками, как это было видно из первой посылки, и что не только все бамбуки — необходимо злаки, как это было видно из второй посылки, но что, кроме того, все бамбуки необходимо цветут колосками. Необходимость вывода непреложно следует из истинности посылок: так как, согласно уже разъяснённым отношениям между свойствами бамбуков, злаков и цветущих колосками, весь объём понятия «злаки» (круг М) входит в объём понятия «цветущие колосками» (круг Р) и так как весь объём понятия «бамбуки» (круг S) входит в объём понятия «злаки» (тот же круг М), то весь объём понятия «бамбуки» необходимо должен входить в объём понятия «цветущие колосками» (весь круг S необходимо должен быть внутри круга Р).

Если бы кто, признавая, что «все бамбуки — злаки» и что «все злаки цветут колосками», стал бы в то же время отрицать, что «все бамбуки цветут колосками», то это было бы равносильно тому, как если бы кто, признав, что круг М помещается весь внутри круга Р и что круг S помещается весь внутри круга М, стал бы в то же время отрицать то, что круг S весь помещается внутри круга Р. Человек, мыслящий таким образом, оказался бы в противоречии с собственной мыслью: соглашаясь с посылками, он мыслил бы круг S целиком внутри круга Р (см. рис. 36а); в это же время, отрицая вывод, он мыслил бы круг S вне круга Р (см. рис. 37).

Рис 36а Рис 37 6 Так как умозаключение - фото 36

Рис. 36а. . . . . . . . . . . . . . . . . Рис. 37

§ 6. Так как умозаключение 1) даёт в выводе мысль новую сравнительно с мыслями, выраженными в посылках, и 2) раскрывает необходимость связи между посылками и выводом, то умозаключение есть очень важная форма логического мышления. Там, где мы сразу непосредственно не видим связи между двумя понятиями, мы можем найти эту связь посредством третьего понятия, если нам только известно, в каком отношении это третье понятие стоит к каждому из наших двух понятий, связь между которыми мы стремимся выяснить. Именно эту задачу и решает умозаключение. Два понятия, отношение между которыми не видно непосредственно, умозаключение связывает посредством третьего понятия, зная отношение этого третьего понятия к каждому из них в отдельности.

Особенно важно, что связь между понятиями, раскрываемая умозаключением, есть связь необходимая. Если посылки истинны и если в ходе умозаключения мы не сделали никакой логической ошибки, то вывод всегда будет необходимо истинным. Умозаключение раскрывает не такую связь между посылками и выводом, которая может быть истинной, но может и не быть истинной. Умозаключение раскрывает необходимость связи, существующей между посылками и выводом. Кто убедился в истинности посылок, тот должен согласиться, тот не может не согласиться с истинностью вывода.

Это свойство умозаключений — логическая необходимость всякого правильного вывода, полученного из истинных посылок, — делает умозаключение важным звеном в доказательстве и в опровержении , во всякого рода спорах и дискуссиях . Умозаключение — могучее средство убеждения. Так, получив в беседе или в споре согласие противника с посылками, мы легко можем заставить его согласиться и с выводом, как только мы покажем, что принятые им посылки необходимо вынуждают к согласию также и с выводом. Рассматривая ранее доказанные теоремы как посылки умозаключения, мы можем показать, что новая теорема, которую мы взялись доказать, есть не что иное, как вывод, необходимо вытекающий из истинности этих посылок, и т. д.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Валентин Асмус читать все книги автора по порядку

Валентин Асмус - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




ЛОГИКА отзывы


Отзывы читателей о книге ЛОГИКА, автор: Валентин Асмус. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x