Виктор Комаров - По следам бесконечности
- Название:По следам бесконечности
- Автор:
- Жанр:
- Издательство:Знание
- Год:1974
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Виктор Комаров - По следам бесконечности краткое содержание
По следам бесконечности - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Если говорить совершенно строго, то потенциальная бесконечность абсолютно непригодна для решения практических задач. Ведь потенциальная бесконечность — это «вечно незавершенный процесс».
Другими словами, одно дело осуществимость потенциальной бесконечности в теории и совсем другое на практике. Воспользуемся современным примером из области теоретической кибернетики. С точки зрения этой науки осуществим любой алгоритм, даже если он требует бесконечного числа шагов. Но реальная электронно-вычислительная машина не в силах решить подобную задачу. Такой расчет лежит за пределами ее возможностей — ведь она обладает всего лишь конечной памятью и способна осуществить хотя и очень большое, но конечное число операций.
Впрочем, математики находили выход из положения: совсем не обязательно достигать бесконечности: на каком-то шаге можно остановиться и вести все расчеты с определенной степенью точности, достаточной, чтобы решение имело практический смысл. Скажем, при вычислении числа π то есть отношения длины окружности к ее поперечнику, вовсе не обязательно находить бесконечное число знаков после занятой. Вполне можно ограничиться, например, пятью знаками — не сотнями и не десятками знаков, а пятью или даже четырьмя. Для практических математических операций этого вполне достаточно.
— Потенциальная бесконечность, — признавал и Георг Кантор, — оказалась весьма хорошим и в высшей степени ценным оружием и в математике и в естествознании.
Но теория множеств, развитая Кантором, по существу, имеет дело с актуальной бесконечностью. С этой целью Кантор обобщил понятие обычного числа до понятия трансфинитного числа. Он сделал попытку создать математический аппарат для описания актуально бесконечных множеств.
Например, первое трансфинитное число ω Кантор определяет как наименьшее из всех чисел, больших любого натурального числа. При этом он использовал одно из определений предела: Т является пределом {а n}, если Т наименьшее из чисел, больших каждого из а n. Последующие трансфинитные числа получаются из ω путем прибавления единицы: ω + 1, ω + 2, ω + 3… Трансфинитное число следующего, второго класса ω2 есть наименьшее из всех чисел, больших чисел вида ω + n и т. д.
Счетные множества имеют мощность первого числового класса. Следующая мощность может быть приписана всем числам второго класса и т. д. Так строится шкала последовательно увеличивающихся мощностей бесконечных множеств.
«Все так называемые доказательства против возможности актуально-бесконечных чисел по существу ошибочны, — писал Кантор в одной из своих работ. — Потому что они заранее приписывают или скорее навязывают бесконечным числам все свойства конечных. Между тем, бесконечные числа должны образовать благодаря своей противоположности конечным числам совершенно новый числовой вид, свойства которого вполне зависят от природы вещей и образуют предмет исследования, а не нашего произвола или наших предрассудков».
Главной отличительной особенностью теории Кантора явилось то обстоятельство, что бесконечные множества рассматривались в ней в завершенном виде как совокупность бесконечного числа всех содержащихся в них элементов.
«Эта бесконечность элементов, — писал советский академик Н. Лузин, — „схваченная“ вместе в одно целое данным характеристическим свойством, является тем самым уже данной вся целиком, уже сформированной и неизменной и, следовательно, как бы уже неподвижной и замкнутой в себе».
Георгу Кантору удалось достичь блестящих результатов и решить ряд очень важных задач, имевших первостепенное значение для развития математической науки.
Но, пожалуй, одной из самых замечательных особенностей новой теории множеств явилась ее небывалая общность. Операции с множествами и подмножествами не накладывают абсолютно никаких ограничений на характер объектов, составляющих эти множества. Они могут быть одушевленными или неодушевленными, маленькими или большими, реальными или воображаемыми. Это обстоятельство привело к тому, что понятия теории множеств стали в одни ряд с наиболее общими понятиями логики.
А в одном пункте теория множеств даже ушла вперед: ведь ее понятия относятся к бесконечным классам объектов, в то время как даже самые общие понятия формальной логики относятся к конечным классам. При этом оказывались нарушенными обычные нормы мышления. Потеряло прежний универсальный смысл утверждение «целое больше своей части». Для трансфинитных чисел операция сложения оказалась зависимой от порядка слагаемых.
После работ Кантора операции с бесконечными множествами стали проводиться как если бы все их элементы находились в нашем распоряжении. Бесконечное в самом деле приобрело актуальный характер.
Смелые идеи Кантора, вступившие в противоречие с многовековыми традициями, господствовавшими в математике, идеи, которые приводили к неожиданным и парадоксальным результатам, встретили серьезную оппозицию в лице многих ученых того времени, хотя ни один значительный математик не выступил в печати с отрицанием теории множеств или ее отдельных положений.
Предубеждение к повой теории в какой-то мере объяснялось еще тем, что Кантор, будучи глубоко верующим католиком, придавал своим статьям откровенно выраженную теологическую форму.
Так, он, например, пытался проводить параллель между свойствами бесконечных множеств и библейскими представлениями о боге.
И все же большинство так или иначе сознавали необходимость теории множеств для самых разнообразных областей математики, В частности, с неизменным вниманием относился к исследованиям Кантора его бывший учитель — один из крупнейших математиков того времени немецкий ученый Вейерштрасс. Когда в 1874 году Кантор доказал несчетность множества действительных чисел, заключенных на отрезке, Вейерштрасс убедил его опубликовать полученный результат и сделал все, чтобы работа Кантора была напечатана в самом распространенном математическом периодическом издании того времени «Журнале чистой и прикладной математики».
В августе 1897 года в Цюрихе состоялся первый Международный конгресс математиков, на котором присутствовало около 250 ученых из 16 стран. В первый же день на пленарном заседании выступал А. Гурвиц с докладом по теории так называемых аналитических функций. Все его выступление было пронизано теоретико-множественными идеями.
Теории множеств посвятил свой доклад также известный французский математик Ж. Адамар.
Это было официальным признанием теории.
Третий кризис
Казалось, все говорило о том, что теперь шествие теории множеств будет победным. Стремительно росло число публикуемых работ. Чуть ли не поголовно увлекались новой теорией молодые математики и студенты. Наконец получил глубокое и всестороннее обоснование анализ бесконечно малых.
Читать дальшеИнтервал:
Закладка: