Виктор Комаров - По следам бесконечности

Тут можно читать онлайн Виктор Комаров - По следам бесконечности - бесплатно полную версию книги (целиком) без сокращений. Жанр: Философия, издательство Знание, год 1974. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    По следам бесконечности
  • Автор:
  • Жанр:
  • Издательство:
    Знание
  • Год:
    1974
  • Город:
    Москва
  • ISBN:
    нет данных
  • Рейтинг:
    4/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Виктор Комаров - По следам бесконечности краткое содержание

По следам бесконечности - описание и краткое содержание, автор Виктор Комаров, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Бесконечность — одно из древнейших научных понятий. О нем спорили, вокруг него не раз разгорались страсти, и чем глубже и шире наука проникала в материальный мир, тем емче, богаче… и противоречивее становилось его содержание. В этом смысле история формирования понятия «бесконечность» ярко и убедительно демонстрирует диалектичность самого процесса познания. Именно эта мысль и легла в основу книги, проводящей читателей по основным этапам формирования понятия.

По следам бесконечности - читать онлайн бесплатно полную версию (весь текст целиком)

По следам бесконечности - читать книгу онлайн бесплатно, автор Виктор Комаров
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Трансфинитные числа, введенные Кантором, устанавливают аналогичный порядок в мире бесконечностей. Кантор предполагал, что с помощью трансфинитных чисел можно перенумеровать любое бесконечное множество и тем самым упорядочить его подобно множеству натуральных чисел.

В том и заключается главный смысл теории множеств, что она превратила математическую бесконечность из чего-то неясного и расплывчатого, находящегося «по ту сторону» от обычных объектов, с которыми мы можем оперировать, в нечто доступное измерению и численному выражению, построила аппарат для исчисления бесконечностей. В дальнейшем предположение Кантора о возможности упорядочения любого множества было строго доказано исходя из аксиомы, предложенной Цермелло и получившей впоследствии название аксиомы выбора.

Для человека, мало знакомого с математикой, эта аксиома прозвучит, должно быть, несколько странно.

Предположим, что у нас имеется бесконечное множество непересекающихся, то есть не имеющих общих элементов бесконечных множеств. Тогда, утверждает аксиома выбора, можно построить по меньшей мере одно множество, которое содержит по одному и только одному элементу из каждого нашего множества.

На первый взгляд, такое утверждение представляется довольно тривиальным. В самом деле, если в школе есть, скажем, десять шестых классов и в каждом из них по 30–40 человек, то нет абсолютно ничего сложного в том, чтобы составить множество, и далеко не единственное, в которое войдет по одному представителю из каждого класса.

Да, действительно, для конечных множеств все получается очень просто. В сущности, в этом случае аксиома выбора — уже не аксиома, ее можно совершенно строго доказать.

Но вот, можно ли ее автоматически обобщить на случай бесконечных множеств, далеко не очевидно. Этот вопрос не мог не волновать математиков, хотя бы уже потому, что из аксиомы выбора непосредственно следует справедливость предположения Кантора об отсутствии промежуточных мощностей между счетным множеством и континуумом.

Вопрос стоял так; противоречит или не противоречит аксиома выбора другим исходным аксиомам теории множеств? После многолетних усилий ряда ученых в 1938–1948 гг. Курт Гёдель наконец нашел ответ на этот вопрос: аксиома выбора независима от других аксиом теории множеств и не вступает с ними в противоречие. А это означало, что континуум-гипотезу Кантора нельзя опровергнуть.

Но тем самым сложилась ситуация, весьма напоминающая знаменитую историю с пятым постулатом Эвклида и чреватая далеко идущими последствиями.

Среди основополагающих аксиом эвклидовой геометрии есть одна аксиома, посвященная вопросу о параллельных и хорошо известная каждому школьнику. Эта аксиома — пятый постулат — утверждает, что через точку, расположенную вне прямой линии, можно провести лишь единственную прямую, параллельную данной. Это утверждение, согласующееся с нашим повседневным опытом, в течение длительного времени считалось вполне очевидным и не вызывало никаких сомнений. Правда, неоднократно делались попытки доказать пятый постулат, вывести его из других аксиом; однако эти попытки не приносили успеха, хотя подобными исследованиями занимались такие выдающиеся математики, как Лагранж, Лаплас, Даламбер, Фурье, Гаусс и многие другие.

Так продолжалось до тех пор, пока проблемой не заинтересовался наш соотечественник Н. И. Лобачевский (1792–1856). Он предпринял попытку построить такую геометрию, все аксиомы которой были бы тождественны обычным, но пятый постулат заменен другим: через точку, лежащую вне прямой, можно провести сколько угодно линий, ей параллельных.

Лобачевский рассуждал так: если подобное предположение неверно, оно неизбежно приведет к противоречию, и утверждение Эвклида о параллельных прямых будет тем самым доказано.

Однако никаких противоречий не возникло: оказалось, что с помощью системы аксиом, выбранной Лобачевским, тоже может быть построена вполне непротиворечивая геометрия.

Как известно, открытие Лобачевского совершило подлинный переворот в математических представлениях. Оно не только указало принципиально новые пути для развития самой математики, но. и дало чрезвычайно важный толчок к новому пониманию роли математических и, в частности, геометрических методов в изучении окружающего нас мира.

Если эвклидова геометрия не единственная возможная геометрическая система, то вполне вероятно, что и геометрические свойства Вселенной могут выходить за рамки этой системы.

По существу, это был первый шаг к новой картине мира, построенной впоследствии теорией относительности.

В 1962–1964 гг. П. Коэн осуществил последний и самый важный шаг в решении проблемы континуума. Ему удалось доказать, что система аксиом Цермелло — Френкеля остается непротиворечивой и в том случае, если заменить аксиому выбора другой аксиомой, противоположной по содержанию. В этой системе аксиом не выполняется и континуум-гипотеза Кантора, что также не приводит ни к каким противоречиям.

Многие считают, что открытие Коэна является одним из самых выдающихся достижений естественных наук во второй половине текущего столетия, и его можно сравнить с такими научными свершениями, как, скажем, открытие квазаров и пульсаров в астрономии или крушение закона «четности» в физике.

Ведь из работы Коэна следует, что может быть построена вполне непротиворечивая математика, в которой ни аксиома выбора, ни континуум-гипотеза не выполняются. И если обычная математика — это математика упорядоченного мира, то новая, о которой идет речь, — это математика мира, не поддающегося упорядочению. Вопрос: в какой степени такая математика отражает свойства реальной Вселенной, существуют ли в природе физические условия, которые ей соответствуют?

Заранее предугадать ответ на этот вопрос, разумеется, невозможно, его может дать только дальнейшее изучение реального мира.

Но сам по себе вопрос этот вполне законный. Хотя математические теории часто развиваются по своей внутренней логике и потому кажутся иной раз совершенно оторванными от реальности, в конечном счете в их основе лежат те или иные объективные факты. И поэтому тесная связь между математическими представлениями и развитием физической картины мира — связь, которую мы обнаруживаем буквально на всех этапах истории естествознания, далеко не случайна.

Совершенно отчетливо проглядывает эта связь и в исследовании проблемы бесконечности Вселенной, в изучении геометрических свойств окружающего нас мира.

По следам бесконечности - изображение 7

Глава III. МАТЕРИЯ И ГЕОМЕТРИЯ

Когда Вселенной не было Шестого июня 1964 года на четвертой странице газеты - фото 8

Когда Вселенной не было?

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Виктор Комаров читать все книги автора по порядку

Виктор Комаров - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




По следам бесконечности отзывы


Отзывы читателей о книге По следам бесконечности, автор: Виктор Комаров. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x