Томас Кун - Структура научных революций

Тут можно читать онлайн Томас Кун - Структура научных революций - бесплатно ознакомительный отрывок. Жанр: Философия. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Структура научных революций
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    3/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Томас Кун - Структура научных революций краткое содержание

Структура научных революций - описание и краткое содержание, автор Томас Кун, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
«Структура научных революций» Томаса Самуэля Куна, американского физика и философа, впервые опубликованная в 1962 году, вызвала широкий резонанс в научных кругах. В этой работе Томас Кун впервые сформулировал новую концепцию развития науки и научного знания, которая произвела настоящий переворот во всей философии науки. Сейчас, сорок лет спустя, эта концепция, некогда давшая повод для широкой полемики и множества философских дискуссий, является общепризнанной во всём научном мире и по праву считается основополагающей...

Структура научных революций - читать онлайн бесплатно ознакомительный отрывок

Структура научных революций - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Томас Кун
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Нечто подобное может иметь силу и для различных исследовательских проблем и технических приёмов, которые связаны с отдельно взятой традицией нормального научного исследования. Общее между ними состоит не в том, что они удовлетворяют некоторому эксплицитному или даже полностью выявленному ряду правил и допущений, которые определяют характер традиции и укрепляют её в научном мышлении, а в том, что их можно отнести на основании сходства или путём моделирования к той или иной части научного знания, которую какое-то научное сообщество признаёт в качестве одного из установленных достижений. Учёные исходят в своей работе из моделей, усвоенных в процессе обучения и из последующего изложения их в литературе, часто не зная и не испытывая никакой потребности знать, какие характеристики придали этим моделям статус парадигм научного сообщества. Благодаря этому учёные не нуждаются ни в какой полной системе правил. Согласованность, обнаруженная исследовательской традицией, которой они придерживаются, может не подразумевать даже существования исходной основы правил и допущений; только дополнительное философское или историческое исследование может их вскрыть. Тот факт, что учёные обычно не интересуются и не обсуждают вопрос о том, чту придаёт правомерность частным проблемам и решениям, наводит нас на мысль, что ответ на них известен им по крайней мере интуитивно. Но это можно считать признаком того, что ни вопрос, ни ответ не являются чем-то непосредственно касающимся их исследования. Парадигмы могут предшествовать любому набору правил исследования, который может быть из них однозначно выведен, и быть более обязательными или полными, чем этот набор.

До сих пор эта точка зрения излагалась чисто теоретически: парадигмы могут определять характер нормальной науки без вмешательства открываемых правил. Позвольте мне теперь попытаться лучше разъяснить эту позицию и подчеркнуть её актуальность путём указания на некоторые причины, позволяющие думать, что парадигма действительно функционирует подобным образом. Первая причина, которая уже обсуждалась достаточно подробно, состоит в чрезвычайной трудности обнаружения правил, которыми руководствуются учёные в рамках отдельных традиций нормального исследования. Эти трудности напоминают сложную ситуацию, с которой сталкивается философ, пытаясь выяснить, что общего имеют между собой все игры. Вторая причина, в отношении которой первая в действительности является следствием, коренится в природе научного образования. Учёные (это должно быть уже ясно) никогда не заучивают понятия, законы и теории абстрактно и не считают это самоцелью. Вместо этого все эти интеллектуальные средства познания с самого начала сливаются в некотором ранее сложившемся исторически и в процессе обучения единстве, которое позволяет обнаружить их в процессе их применения. Новую теорию всегда объявляют вместе с её применениями к некоторому конкретному разряду природных явлений. В противном случае она не могла бы даже претендовать на признание. После того как это признание завоёвано, данные или другие приложения теории сопровождают её в учебниках, по которым новое поколение исследователей будет осваивать свою профессию. Приложения не являются просто украшением теории и не выполняют только документальную роль. Напротив, процесс ознакомления с теорией зависит от изучения приложений, включая практику решения проблем как с карандашом и бумагой, так и с приборами в лаборатории. Например, если студент, изучающий динамику Ньютона, когда-либо откроет для себя значение терминов «сила», «масса», «пространство» и «время», то ему помогут в этом не столько неполные, хотя в общем-то полезные, определения в учебниках, сколько наблюдение и применение этих понятий при решении проблем.

Данный процесс обучения путём теоретических или практических работ сопровождает весь ход приобщения к профессии учёного. По мере того как студент проходит путь от первого курса до докторской диссертации и дальше, проблемы, предлагаемые ему, становятся всё более сложными и неповторимыми. Но они по-прежнему в значительной степени моделируются предыдущими достижениями, так же как и проблемы, обычно занимающие его в течение последующей самостоятельной научной деятельности. Никому не возбраняется думать, что на этом пути учёный иногда пользуется интуитивно выработанными им самим правилами игры, но оснований для того, чтобы верить в это, слишком мало. Хотя многие учёные говорят уверенно и легко о собственных индивидуальных гипотезах, которые лежат в основе того или иного конкретного участка научного исследования, они характеризуют утвердившийся базис их области исследования, её правомерные проблемы и методы лишь немногим лучше любого дилетанта. О том, что они вообще усвоили этот базис, свидетельствует главным образом их умение добиваться успеха в исследовании. Однако эту способность можно понять и не обращаясь к предполагаемым правилам игры.

Указанные последствия научного образования имеют оборотную сторону, которая служит основанием для третьей причины, позволяющей предположить, что парадигмы направляют научное исследование как благодаря непосредственному моделированию, так и с помощью абстрагированных из них правил. Нормальная наука может развиваться без правил лишь до тех пор, пока соответствующее научное сообщество принимает без сомнения уже достигнутые решения некоторых частных проблем. Правила, следовательно, должны постепенно приобретать принципиальное значение, а характерное равнодушие к ним должно исчезать всякий раз, когда утрачивается уверенность в парадигмах или моделях. Любопытно, что именно это и происходит. Для допарадигмального периода в особенности характерны частые и серьёзные споры о правомерности методов, проблем и стандартных решений, хотя они служат скорее размежеванию школ, чем достижению согласия. Мы уже обращали внимание на такие споры в оптике и теории электричества. Ещё более серьёзную роль они играли в развитии химии в XVII веке и геологии в начале XIX столетия [45] О развитии этого тезиса применительно к химии см.: H.Metzger. Les doctrines chimiques en France du début du XVII e а la fin du XVIII e siècle. Paris, 1923, p. 24—27, 146—149; M. Boas. Robert Boyle and Seventeenth-Century Chemistry. Cambridge, 1958, chap. II. О развитии того же тезиса применительно к геологии см.: W.F.Cannon. The Uniformitarian-Catastrophist Debate. — «Isis», LI, 1960, p. 38—55; С. С. Gillispie. Genesis and Geology. Cambridge, Mass., 1951, chaps. IV—V. . Кроме того, споры, подобные этим, не утихают навсегда с появлением парадигмы. Почти несущественные в течение периода нормальной науки, они регулярно вспыхивают вновь непосредственно в процессе назревания и развёртывания научных революций, то есть в такие периоды, когда парадигмы первыми принимают бой и становятся объектом преобразований. Переход от ньютоновской к квантовой механике вызвал много споров как вокруг природы, так и вокруг стандартов физики, причём некоторые из этих споров всё ещё продолжаются [46] О спорах в квантовой механике см.: J.Ullmo. La crise de la physique quantique. Paris, 1950, chap. II. . Ещё живы те, кто, может быть, помнит подобные дискуссии, порождённые электромагнитной теорией Максвелла и статистической механикой [47] О статистической механике см.: R.Dugas. La théorie physique au sens de Boltzmann et ses prolongements modernes. Neuchatel, 1959, p. 158—184; 206—219. Для представления о работах Максвелла см.: M.Planck. Maxwell's Influence in Germany. — «James Clerk Maxwell: A Commemoration Volume, 1831—1931», Cambridge, 1931, p. 45—65, особенно стр. 58—63; S. P. Thompson. The Life of William Thomson Baron Kelvin of Largs. London, 1910, II, p. 1021—1027. . А ещё раньше восприятие механики Галилея и Ньютона вызвало особенно знаменитую серию споров с аристотелианцами, картезианцами и последователями Лейбница о стандартах, правомерных в науке [48] Пример битвы с аристотелианцами см.: А.Koyré. A Documentary History of the Problem of Fall from Kepler to Newton. — «Transactions of the American Philosophical Society», XLV, 1955, p. 329—395. О спорах с картезианцами и последователями Лейбница см.: Р.Brunet. L'introduction des théories de Newton en France au XVIII siècle. Paris, 1931; A. Koyré. From the Closed World tu the Infinite Universe. Baltimore, 1957, chap. XI. . Когда учёные спорят о том, были ли решены фундаментальные проблемы в их области, поиски правил приобретают такое значение, которого эти правила обычно не имели. Однако пока парадигмы остаются в силе, они могут функционировать без всякой рационализации и независимо от того, предпринимаются ли попытки их рационализировать.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Томас Кун читать все книги автора по порядку

Томас Кун - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Структура научных революций отзывы


Отзывы читателей о книге Структура научных революций, автор: Томас Кун. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x