Д Шадрин - Логика

Тут можно читать онлайн Д Шадрин - Логика - бесплатно ознакомительный отрывок. Жанр: Философия, издательство Эксмо, год 2007. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Логика
  • Автор:
  • Жанр:
  • Издательство:
    Эксмо
  • Год:
    2007
  • Город:
    Москва
  • ISBN:
    978-5-699-2415
  • Рейтинг:
    4.63/5. Голосов: 81
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Д Шадрин - Логика краткое содержание

Логика - описание и краткое содержание, автор Д Шадрин, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Информативные ответы на все вопросы курса «Логика» в соответствии с Государственным образовательным стандартом.

Логика - читать онлайн бесплатно ознакомительный отрывок

Логика - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Д Шадрин
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Все млекопитающие — животные.

Все кошки — млекопитающие.

Все кошки — животные.

Это умозаключение является истинным.

Умозаключение имеет ряд преимуществ перед формами чувственного познания и опытными исследованиями. Так как процесс умозаключения проходит только в области мышления, он не затрагивает реальных предметов. Это очень важное свойство, так как зачастую у исследователя нет возможности получить для наблюдения или опытов реальный предмет в силу его дороговизны, размеров или удаленности. Некоторые предметы на данный момент вообще можно считать недоступными для прямого исследования. Например, к такой группе предметов можно отнести космические объекты. Как известно, исследование человеком даже ближайших к Земле планет представляется проблематичным.

Недостатком умозаключения можно назвать то, что зачастую заключения характеризуются абстрактностью и не отражают многих конкретных свойств предмета. Это не относится, например, к упомянутой выше периодической таблице химических элементов. Доказано, что при ее помощи были открыты элементы и их свойства, которые на тот момент еще не были известны ученым. Однако так бывает не во всех случаях. Например, при определении положения планеты астрономами свойства ее отражаются лишь приблизительно. Также зачастую нельзя говорить о правильности заключения до тех пор, пока оно не прошло проверку на практике.

Умозаключения могут быть истинными и вероятностными. Первые с достоверностью отражают реальное положение вещей, вторые носят неопределенный характер. Видами умозаключения являются: индукция, дедукция и заключение по аналогии.

Умозаключение— это прежде всего выведение следствий, оно применяется повсеместно. Каждый человек в своей жизни независимо от профессии строил умозаключения и получал следствия из этих заключений. И здесь встает вопрос истинности таких следствий. Человек, который не знаком с логикой, пользуется ею обывательским уровнем. То есть судит о вещах, строит умозаключения, делает выводы, исходя из того, что накопил в процессе жизни.

38. Дедуктивные умозаключения

Дедуктивнымиявляются следующие типы умозаключений: выводы логических связей и субъектно-предикатные выводы.

Также дедуктивные умозаключения бывают непосредственными. Они делаются из одной посылки и называются превращением, обращением и противопоставлением предикату, отдельно рассматриваются умозаключения по логическому квадрату. Выводятся такие умозаключения из категорических суждений.

Рассмотрим эти умозаключения. Превращение имеет схему:

S есть Р

S не есть не-Р.

По этой схеме видно, что посылка только одна. Это категорическое суждение. Превращение характеризуется тем, что при изменении качества посылки в процессе вывода не происходит изменения ее количества, а предикат следствия отрицает предикат посылки. Есть два способа превращения — двойное отрицание и замена отрицания в предикате отрицанием в связке. Первый случай отражен на схеме, приведенной выше. Во втором превращение отражается на схеме как S есть не-Р — S не есть Р.

В зависимости от типа суждения превращение можно выразить следующим образом.

Все S есть Р — Ни одно S не есть не-Р.

Ни одно S не есть Р — Все S есть не-Р.

Некоторые S есть Р — Некоторые S не есть не-Р.

Некоторые S не есть Р — Некоторые S есть не-Р.

Обращение— это умозаключение, в котором при перемене мест субъекта и предиката качество посылки не меняется.

То есть в процессе вывода субъект встает на место предиката, а предикат — на место субъекта. Соответственно, схему обращения можно изобразить как S есть Р — Р есть S.

Обращение бывает с ограничением и без ограничения (его еще называют простое или чистое). Это разделение основывается на количественном показателе суждения (имеется в виду равенство или неравенство объемов S и Р). Это выражается в том, изменилось ли кванторное слово или нет и распределены ли субъект и предикат. Если такое изменение происходит, то имеет место обращение с ограничением. В обратном случае можно говорить о чистом обращении. Напомним, что кванторное слово — это слово — показатель количества. Так, слова «все», «некоторые», «ни один» и другие являются кванторными словами.

Противопоставление предикату характеризуется тем, что связка в следствии меняется на противоположную, субъект противоречит предикату посылки, а предикат эквивалентен субъекту посылки.

Необходимо сказать, что непосредственное умозаключение с противопоставлением предикату невозможно вывести из частноутвердительных суждений.

Приведем схемы противопоставления в зависимости от типов суждений.

Некоторые S не есть Р — Некоторые не-Р есть S.

Ни одно S не есть Р — Некоторые не-Р есть S.

Все S есть Р — Ни одно Р не есть S.

39. Условные и разделительные умозаключения

Условные умозаключенияназываются так потому, что в качестве посылок в них используются условные суждения (если а, то b). Условные умозаключения можно отразить в виде следующей схемы.

Если а, то b.

Если b, то с.

Если а, то с.

Выше указана схема умозаключений, являющихся видом условных. Для таких умозаключений характерно, что все их посылки являются условными.

Разделительные умозаключенияделятся на простые разделительные и разделительно-категорические умозаключения. В первом случае разделительными являются все посылки. Соответственно, разделительно-категорические суждения имеют в качестве одной из посылок простое категорическое суждение.

Таким образом, разделительным считается умозаключение, все или часть посылок которого являются разделительными суждениями. Структура простого разделительного умозаключения отражается следующим образом.

S есть А или В, или С.

А есть А1 или А2.

S есть А1 или А2, или В, или С.

Примером такого умозаключения является следующее.

Путь бывает прямым или окружным.

Окружный путь бывает с одной пересадкой или с несколькими пересадками.

Путь бывает прямым или с одной пересадкой, или с несколькими пересадками.

Разделительно-категорические умозаключения можно представить в виде схемы.

S есть А или В.

S есть А (В).

S не есть В (А).

Например:

Выстрел бывает точным и неточным.

Этот выстрел является точным.

Этот выстрел не является неточным.

Здесь необходимо упомянуть об условно-разделительных умозаключениях. От указанных выше умозаключений они отличаются посылками. Одна из них — это разделительное суждение, что не является особенным, однако вторая посылка таких суждений состоит из двух или нескольких условных суждений.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Д Шадрин читать все книги автора по порядку

Д Шадрин - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Логика отзывы


Отзывы читателей о книге Логика, автор: Д Шадрин. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x