Станислав Лем - Диалоги
- Название:Диалоги
- Автор:
- Жанр:
- Издательство:АСТ, Транзиткнига
- Год:2007
- Город:Москва
- ISBN:5-17-023030-3, 5-9578-0903-9
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Станислав Лем - Диалоги краткое содержание
Размышления знаменитого писателя-фантаста и философа о кибернетике, ее роли и месте в современном мире в контексте связанных с этой наукой – и порождаемых ею – социальных, психологических и нравственных проблемах. Как выглядят с точки зрения кибернетики различные модели общества? Какая система более устойчива: абсолютная тирания или полная анархия? Может ли современная наука даровать человеку бессмертие, и если да, то как быть в этом случае с проблемой идентичности личности?
Написанная в конце пятидесятых годов XX века, снабженная впоследствии приложением и дополнением, эта книга по-прежнему актуальна. Многое из того, что предвидел Лем, сбылось, многому еще, возможно, предстоит осуществиться...
Диалоги - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Признание правомочности телеологического подхода, и как следствие – аксиологического в биологии как эмпирической дисциплине, – представляет собой предварительную аккредитацию определенной исследовательской позиции, однако еще не предопределят, располагает ли современный исследователь теоретическими и техническими средствами, позволяющими реализовать программу объективной аксиологической экспертизы. Вероятно, не будет преувеличением сказать, что если биология и ожидала помощи со стороны других дисциплин, то уж меньше всего – со стороны технологии, понимаемой как инженерно-конструкторская деятельность. Так было по крайней мере каких-то сорок лет назад. И однако же именно эта помощь сейчас начинает иметь решающее влияние в успехе – в том числе и теоретической биологии. Конечно, между конструктором и биологом существует серьезное различие. Во-первых, биолог исследует данные системы, которых сам он не конструировал, из-за чего ему не известна ни их «цель» в функциональном предназначении, ни детальная характеристика системных подчиненных комплексов. Конструктор же всегда имеет заданную цель и, поддерживаемый ею, создает проекты, а потом воплощает различные варианты устройств, причем – это следует подчеркнуть – обычно его предварительное знание – о свойствах создаваемого – полно пробелов. Поэтому многие – особенно комплексные, сложные – системы конструктор не создает, основываясь исключительно на расчетах, теоретико-прогностически, но скорее происходит так, что разработка осуществляется в виде последовательных ходов – состоящих, например, в применении метода пробных прототипов. Такова принципиальная разница подхода к проблеме. Во-вторых, каждая технология, особенно в фазе своего апогея, создает собственное обрамление из парадигм и общих директив, то есть как бы локальный субститут «культурной нормы», устанавливающий определенные, уже неподвергаемые сомнению области, в пределах которых можно задавать конкретные инструментальные ценности создаваемых продуктов. Речь идет о том, например, что в самом техническом знании нет ничего такого, что могло бы нас информировать о том, двойным или тройным следует делать коэффициент безопасности с точки зрения предполагаемой (как нормальной) функциональной нагрузки конструкции. Так вот, каждый специалист наиочевиднейшим образом должен знать правила, составляющие упомянутое «обрамление» технологии, из нее самой впрямую невыводимые, раз он их применяет в повседневной практике. Тогда он сможет отличать то, что является определенным абсолютным минимумом, инвестированным в конкретный продукт, и тем, что представляет собой конструктивный избыток, создающий многоотраслевой резерв безопасности. Биологу же аналогичное знание не дано, хуже того, традиция научной отрасли, главенствующей в естествознании, каковой является физика, которой биолог был бы рад подчиниться, вообще не знает различий подобного типа, потому что физик вполне справедливо не считает, что атомы якобы обладают «встроенным» функциональным минимумом и какой-то там надстройкой гарантированной избыточности. Таким образом, предмет биологических исследований больше похож на плоды конструкторской работы, чем на физические объекты.
Хотя технология постепенно становится поставщиком исследовательских методов, образцов моделирования и формальных структур для биологии, однако любая аппаратура, передаваемая таким образом, все еще недостаточна для отождествления условий биолога, исследующего организм, – с условиями конструктора, исследующего машину. Самое серьезное затруднение в области теории вызывает то, что формальный аппарат анализа, перенятый биологами из области технологий (которые условно можно было бы назвать «кибернетическими»), для исследования сложности типично биологических систем слишком прост. Это не вызовет удивления, если добавить, что этого аппарата недостаточно уже и самим технологам.
Еще очень далеко до того, чтобы конструктор мог бы в каждом случае сказать, а к тому же еще – измерить и этим измерением установить, насколько данное устройство приблизилось к абсолютному потолку совершенства, которое вообще возможно реализовать для данного типа технологий. Потому что эта планка постоянно поднимается, в том числе и для данной, перенасыщенной очередными усовершенствованиями технологической области. То есть то, что было лучшим двигателем внутреннего сгорания в 1940 году, уже этим (в поршневом варианте) не является в году 1968; то, что было лучшей цифровой машиной в году 1949, не может ею быть в году 1970. Однако хотя это двойное движение – прототипных усовершенствований на данном отрезке времени, в данном синхроническом разрезе техноэволюции, а также усовершенствований на всем пути, который диахронически проходит отдельно взятая технология от зарождения до смерти (например, великое парусное мореплавание принадлежит к умершим технологиям) – бесконечно перетасовывает подборки критериев, устанавливающих мерки для инструменталиста-аксиометра, однако усложненность, порожденная этим явлением, не является просто хаосом. Для данного периода времени – инструментальные критерии, позволяющие применить инструментальную аксиометрию, бывают как раз очень четкими. То же, что технолог не узнает у колыбели новой технологии, как представляется область ее теории (а только тогда он смог бы точно предсказывать, в том числе и в аксиометрическом диапазоне), совсем не мешает ему на практике. Можно сказать, что технолог воплощает свои знания в собственных произведениях, что он на них учится, что, обнаруживая их слабые стороны, то есть методом проб и ошибок, он творит следующую генерацию устройств, более продвинутых в сторону оптимизации, и т.д. Следовательно, его знания ширятся пропорционально возрастающему совершенству его изобретений, потому что между ним и этими устройствами действует обратная связь. Наверняка ничего подобного не может быть в биологии. Биология организмов «простейших», к примеру, каких-нибудь инфузорий, сама вовсе не является теоретически и формально «простейшей» областью; то есть происходит вовсе не таким образом, чтобы в ней от организмов, «построенных элементарно», действительно можно было бы постепенно переходить ко все более сложным. Не потому, чтобы все они располагались на одном и том же уровне сложности, но потому, что даже эти простейшие являются еще на несколько порядков более сложными, чем применяемые к ним теоретически моделированные структуры. Так, например, в организмах отсутствуют другие регулирующие системы, кроме нелинейных, и наверное, не из-за озлобленности на исследователя, а потому что такие регуляторы более функциональны. Но мечта алгоритмизировать нелинейные системы более чем тщетна. Здесь удобно воспользоваться приблизительными схемами, скорее даже грубыми упрощениями (например, принять, что нелинейным является только один блок управления, а другие – линейные, что приемлемо, но не соответствует истине), или же численным моделированием (этот метод оказывается лучшим изо всех). Такое положение вещей свидетельствует, что технологические знания все еще неизмеримо «отсталые» и «примитивные» по сравнению с тем их объемом, каким обладают живые организмы начиная с бактерий. Подобное «отставание» грозит непредсказуемыми для биолога последствиями, особенно если бы он захотел применить инструментальную аксиометрию к предмету своих исследований, а не только говорить о ней в общих выражениях или обосновывать ее важность чисто теоретически. Неудобство точки зрения ученого лучше всего видно на примерах. Если бы инженер-энергетик середины девятнадцатого века задумал исследовать инструментальную ценность современной атомной электростанции, то он столкнулся бы с непреодолимыми трудностями. Какие-то узлы этой электростанции были бы для него достаточно обычными, однако принципы действия других он бы вообще не понимал. Если не известны ни фундаментальные принципы определенной технологии, ни ее предельные возможности (а они представляют собою функцию свободной ориентации в области теоретических основ), то невозможно установить, какую функциональность, какую производительность, какое – одним словом – совершенство воплощения демонстрирует данная конструкция. Инженер девятнадцатого века захотел бы, возможно, применить критерии безопасности, установленные для паровых котлов, к измерению безопасности урановых котлов; я сомневаюсь, чтобы такое сравнение имело какой-то смысл. Ведь то, как предохраниться от взрыва, вызванного превышением давления, не имеет почти ничего общего со взрывом как результатом потери контроля над ходом ядерной реакции – и т.д.
Читать дальшеИнтервал:
Закладка: