Секст Эмпирик - Сочинения в двух томах (Том 1)
- Название:Сочинения в двух томах (Том 1)
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Секст Эмпирик - Сочинения в двух томах (Том 1) краткое содержание
Секст Эмпирик - выдающийся античный философ, последний представитель школы античного скептицизма. В настоящем томе впервые публикуются на русском языке наиболее важные его сочинения: "Две книги против логиков" и "Две книги против физиков" из большого трактата "Против ученых", представляющие собой ценнейший источник сведений по истории различных философских школ античности.
Знак "###" в тексте обозначает нераспознанные древнегреческие символы (прим. сканировщика)
Сочинения в двух томах (Том 1) - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
304
содержало телесность и как бы разумные основания тела, или тело получается после их соединения. И если каждое из них до соединения содержало телесность, то каждое будет телом. Затем, поскольку тело не есть только длина, или только ширина, или только глубина, но и длина, и ширина, и глубина, то каждое из них, обладая телесностью, станет [сразу] тремя, и, таким образом, длина будет не просто длиной, но шириной и глубиной, и ширина - не просто шириной, но и длиной и глубиной, точно так же и оставшееся измерение. Если же тело получается при их соединении, то по соединении их или остается их первоначальная природа, или превращается в телесность. И если остается первоначальная природа, то, поскольку они бестелесны и остаются бестелесными, они не создадут отличного от них тела. Если же они превращаются в тело, то, поскольку то, что [вообще] подвергается превращению, есть тело, каждое из них, будучи телом еще до соединения, создает тело прежде тела.
Далее, как превращающееся тело получает одно качество вместо другого, но все же остается телом (например, белое, когда становится черным, и сладкое, когда становится горьким, одно качество отбрасывает, а другое принимает, не переставая быть телом), так и они, если превращаются в тело, должны получить одно качество вместо другого. Но, претерпевая подобное, они должны быть телами.
Итак, если ни мыслимое до их соединения, ни мыслимое после их соединения не есть тело, то нельзя мыслить и тела [вообще]. Кроме того, если нет ни длины, ни ширины, ни глубины, то не возникнет и тело, которое мыслится как причастное этим измерениям. Но, как мы покажем, нет никакой длины, ширины п глубины. Следовательно, нет и тела.
В самом деле, длина не существует, потому что этот наибольший размер тела есть то, что у математиков называется линией, линия же есть растекшаяся точка, а точка - знак без частей и без протяжения. Отсюда если знак без частей и протяжения есть ничто, то не получится и линии, но при отсутствии линии не будет длины, а при отсутствии длины не будет тела, ибо тело мыслится с длиною. Но что нет [точечного] знака без частей и протяжения, это мы сейчас узнаем. Действительно, если таковой существует, то он есть или тело, пли бестелесное. Но он не есть тело, поскольку он был протяжен ввиду того, что тело имеет три измерения.
305
Но он и не бестелесен. Ведь если он бестелесен, то от него ничего и не произойдет. Рождающее рождает посредством соприкосновения, но не может быть никакого соприкосновения при бестелесной природе. Следовательно, точечный знак и не бестелесен. Если же знак точки не есть ни тело, ни бестелесное, то он не может мыслиться. О нем невозможно составить понятие. Если же нет [этого знака] точки, то не будет и линии. При отсутствии линии не будет и длины, откуда вытекает нереальность существования и тела.
Далее, если даже допустить, что знак точки существует, то длины все равно не будет. Ведь длина есть линия, а линия - протекание [знака] точки. Поэтому линия или есть одна растянутая точка, или мыслится в качестве множества точек, лежащих в виде ряда. Но если имеется [только] одна растянутая точка, она не будет линией. Ведь точка или занимает одно и то же место, или переходит с места на место. И если этот знак занимает одно и то же место, получится не линия, но точка, поскольку линия мыслится как текучий [знак].
Если же [знак] переходит с места на место, то он или переходит с оставлением одного места и занятием другого, или простирается на другое с удержанием прежнего места.
Но он не создаст линии с оставлением одного места и с занятием другого, поскольку он остается первоначальной точкой, и, в каком смысле, занимая первоначальное место, он назывался точкой, а не линией, в таком же смысле и, занимая второе, третье и последующие места, он будет не линией, но опять точкой. Если же он создает линию, занимая одно место и простираясь на другое, то он распространяется или на делимом, или на неделимом месте. И если на неделимом, то он остается точкой и не становится линией, поскольку линия есть нечто делимое. Если же он распространяется на делимом месте, то, поскольку распространяющееся на делимом месте делимо и имеет части, а имеющее части есть тело, постольку знак точки будет делимым и телом, - чего они не желают [допускать]. Следовательно, линия не есть один знак точки. Но не будет линией и множество точечных знаков, лежащих в виде ряда, Ведь эти
306
знаки точки по своему понятию или взаимно соприкасаются, или не касаются друг друга и разделяются некоторыми промежутками. Если между ними имеются промежутки, то они уже не составят одной линии. Если же они взаимно соприкасаются, то они касаются или целым целого, или частями частей. И если они касаются частями частей, то они уже не будут неделимы. Ведь точка, стоящая между двумя другими точками, будет иметь несколько частей: одну часть, которой она касается передней точки, другую - которой касается задней, третью - которой касается плоскости, четвертую - которой касается верхней части. Поэтому она уже не будет не имеющей частей, но будет многочастной. Если же [здесь] целое касается целого, то точки поместятся в точках и займут одно и то же место. Но если они займут одно и то же место, то уже не будет их ряда, чтобы образовалась линия, но все они станут одной точкой.
Итак, если для того чтобы мыслить тело, надо мыслить длину, а для длины линию, а для нее точку, то, поскольку доказано, что линия не есть знак точки и не состоит из этих знаков, постольку линия не существует. Если же нет линии, то нет и длины. Отсюда следует, что никакое тело не существует [вообще].
Мы только что доказали немыслимость линии, разбирая знак точки. Но можно и непосредственно устранить ее, разобрав собственное ее понятие. Именно, геометры говорят, что линия есть длина без ширины, а мы, скептики, не можем понять длины, не имеющей ширины, ни в чувственном, ни в умопостигаемом. Ведь какую бы чувственную длину мы ни воспринимали, мы воспринимаем ее с некоторой шириной. Поэтому в области чувственного невозможно никакое тело без ширины. Невозможно представить себе такую длину и 'в области умопостигаемого. Ведь хотя мы можем мыслить одну длину уже другой, однако когда мы, сохраняя ту же длину, понемногу расщепляем мысленно ширину и делаем это до известного предела, то мы мыслим, что ширина становится все меньше и меньше; когда же мы вздумаем сразу лишить длину ширины, то мы уже не мыслим также и длины, но с упразднением ширины упраздняется и понятие о длине.
307
Кроме того, вообще все мыслимое мыслится или на основании появления очевидных [признаков], или на основании исхождения от очевидного. И это происходит разнообразно: то по сходству, то по присоединению, то по аналогии (и притом или увеличительной, или уменьшительной). На основании появления очевидных [признаков] мыслится, например, белое и черное, сладкое и горькое. Ведь они хотя и чувственны, тем не менее мыслятся. На основании исхождения от очевидного мыслится уподобительно - например, на основании изображения Сократа - отсутствующий Сократ. Соединительно же - например, на основании человека и коня - ни человек, ни конь, а сложенный из обоих гиппокентавр. По аналогии, увеличительной или уменьшительной, - например, от наружности обыкновенного по росту человека, увеличив в воображении [обычно] встречающегося нам, - мы измыслили киклопа, который не сходен
Читать дальшеИнтервал:
Закладка: