Секст Эмпирик - Сочинения в двух томах (Том 1)

Тут можно читать онлайн Секст Эмпирик - Сочинения в двух томах (Том 1) - бесплатно полную версию книги (целиком) без сокращений. Жанр: Философия. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Сочинения в двух томах (Том 1)
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    3.3/5. Голосов: 101
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Секст Эмпирик - Сочинения в двух томах (Том 1) краткое содержание

Сочинения в двух томах (Том 1) - описание и краткое содержание, автор Секст Эмпирик, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Секст Эмпирик - выдающийся античный философ, последний представитель школы античного скептицизма. В настоящем томе впервые публикуются на русском языке наиболее важные его сочинения: "Две книги против логиков" и "Две книги против физиков" из большого трактата "Против ученых", представляющие собой ценнейший источник сведений по истории различных философских школ античности.

Знак "###" в тексте обозначает нераспознанные древнегреческие символы (прим. сканировщика)

Сочинения в двух томах (Том 1) - читать онлайн бесплатно полную версию (весь текст целиком)

Сочинения в двух томах (Том 1) - читать книгу онлайн бесплатно, автор Секст Эмпирик
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Был с человеком, вкушающим хлеб, и казался лесистой

Дикой вершиной горы [98],

а уменьшивши, составили понятие о пигмее. При наличии стольких методов мысли если линия мыслится как длина без ширины, то, очевидно, она должна мыслиться каким-нибудь из этих методов. Но она не может мыслиться ни по одному из них, как мы покажем, поэтому она немыслима. На основании появления очевидного не может возникнуть понятия о какой-либо длине без ширины, поскольку в видимых и ясных предметах мы не найдем никакой длины без ширины. Однако на основании перехода от очевидного опять-таки невозможно вообразить себе длину без ширины, равно как и на основании сходства, поскольку в области очевидного мы не находим длины без ширины, чтобы мыслить похожую на это какую-нибудь длину помимо ширины. Ведь она должна походить на что-либо познаваемое и видимое. Но так как мы не имеем явно встречающейся длины помимо ширины, то мы не сможем понять существования подобной ей длины без ширины. Это неприемлемо также и на основании присоединения: пусть они скажут нам, какие фактически встречаются очевидные признаки, в соединении с какими они получают понятие длины без ширины? Сказать это они не будут в состоянии.

308

Далее, понятие длины без ширины не появилось и по аналогии. Ведь то, что мыслится по аналогии, имеет нечто общее с тем, на основании чего оно мыслится. Например, на основании обыкновенного роста человека через увеличение мы измыслили киклопа и на основании того же самого, но через уменьшение в свою очередь - пигмея. Поэтому, если есть нечто общее у того, что мыслится по аналогии, с тем, на основании чего оно мыслится, и если, с другой стороны, мы не находим ничего общего между длиною без ширины и длиною с шириной, чтобы, отправляясь от последней, мы могли бы измыслить длину без ширины, то, следовательно, она не мыслится и по аналогии. Отсюда вытекает, что если каждое мыслимое должно мыслиться по какому-либо из предложенных методов, а мы доказали, что длина без ширины не может мыслиться ни по одному на них, то следует сказать, что длина без ширины немыслима.

Но может быть, кто-нибудь скажет, что, приняв некоторую длину с некоторой шириной, мы мыслим длину без ширины по принципу усиления свойства (###). Ведь если ширина понемногу уменьшается, то она придет и к исчезновению, так что уменьшение закончится длиной без ширины. Но во-первых, мы доказали, что полное упразднение ширины есть и уничтожение длины. Затем, то, что мыслится по усилению, не отличается от ранее мыслимого, но есть оно само, только в усиленной степени. Поэтому если на основании имеющего некоторую ширину мы желаем понять по принципу усиления узости, то мы вовсе не помыслим длину без ширины (ибо они разнородны), но постоянно будем получать ширину все уже и уже, так что конечный пункт мысли остановится на наименьшей ширине, а после этого произойдет переход в разнородное, и именно ввиду уничтожения длины вместе с уничтожением ширины.

Вообще если мы можем мыслить длину без ширины в меру устранения ширины, то, поскольку ничто устраняющее не находится в наличии, и длина без ширины не существует. Поэтому не существует и линия. Ведь конь есть нечто существующее в действительности, а "не конь" не существует, и человек существует, а "не человек" не существует. Следовательно, если мы имеем некоторую ширину или некоторую длину, они будут в наличии. А не имеющее ширины не будет существовать в действительности. Как заблуждаются те, которые говорят, что они получают понятие беспредельной величины как тела путем прибавления одной величины к другой, а на самом деле они получают в результате прибавления многих величин [только] какую-то наи

309

большую, и она не беспредельна, но ограничена (ведь то, что они мыслили крайним, доступно мысли, а доступное мысли ограничено, поскольку остальное, еще не воспринятое мыслью, показывает, что воспринятое не беспредельно), так, следовательно, и в этом случае сокращение ширины, когда мысль оканчивается на наименьшей ширине, есть ширина, а не длина без ширины.

Еще иначе: если те, кто мыслит длину с некоторой шириной, могут лишить ее ширины и мыслить длину без ширины, то можно будет и тем, кто мыслит плоть со свойством ранимости, по отнятии ранимости мыслить плоть неранимой. И возможно будет тем, кто мыслит тело со свойством твердости, по отнятии твердости принять тело в качестве лишенного твердости. Это, однако, невозможно, поскольку то, что мыслится неранимым, не есть тело (раз понятие тела включает свойство ранимости) и то, что лишено твердости, не есть тело (раз понятие тела включает свойство твердости). Итак, и длина, мыслимая без ширины, не может быть длиной (раз понятие длины включает некоторую ширину).

Однако по крайней мере Аристотель [99] не считал немыслимой выставляемую у геометров длину без ширины (длину стены, говорит он, мы принимаем без присоединения ее к ширине стены). Но он заблуждался. Действительно, когда мы принимаем длину стены без ширины, то мы принимаем ее не безо всякой ширины, но без ширины именно стены. Ведь можно же, сочетав длину стены с любой шириной, какова бы эта последняя ни была, иметь о ней понятие так, чтобы принимать длину не без всякой ширины, а [только] без этой некоторой ширины. Аристотелю надлежало показать не то, что можно мыслить длину без какой-либо ширины, а то, что ее можно мыслить без всякой ширины. Но он этого не показал.

310

Кроме того, если геометры называют линию не только длиной без ширины, но и границей плоскости, то можно и в более общей форме строить апории относительно линии и плоскости. Действительно, если линия есть граница плоскости, будучи длиной без ширины, то, конечно, по приложении плоскости к плоскости или две линии, [ограничивающие эти плоскости], становятся параллельными, или образуется из обеих одна. И если две параллельные линии становятся одною, то, поскольку линия есть граница плоскости и плоскость граница тела, когда две линии стали одной, две плоскости тоже станут одной. Таким образом, и два тела станут одним телом, и приложение уже не будет приложением, но соединением. Это, однако, невозможно. Ведь при взаимном приложении тел друг к другу в некоторых случаях естественно происходит соединение (например, в случае с жидкостями), в других же не происходит (камень с камнем и сталь со сталью не превращаются в единство в случае взаимоприложения). Поэтому две линии не могут стать одною. И иначе: если мы допустим, что они стали одною и вследствие этого произошло соединение тел, то разделение их ввиду насильственности разрыва должно будет происходить не по прежним границам, но во все новых и новых частях. Но это не так. В границах сохраняется та же самая природа и до взаимного приложения, и после разделения. Следовательно, две параллельные линии не становятся одною.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Секст Эмпирик читать все книги автора по порядку

Секст Эмпирик - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Сочинения в двух томах (Том 1) отзывы


Отзывы читателей о книге Сочинения в двух томах (Том 1), автор: Секст Эмпирик. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x