Джорж Беркли - Трактат о принципах человеческого знания

Тут можно читать онлайн Джорж Беркли - Трактат о принципах человеческого знания - бесплатно полную версию книги (целиком) без сокращений. Жанр: Философия. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Трактат о принципах человеческого знания
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    3.56/5. Голосов: 91
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Джорж Беркли - Трактат о принципах человеческого знания краткое содержание

Трактат о принципах человеческого знания - описание и краткое содержание, автор Джорж Беркли, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Главное теоретическое сочинение Джорджа Беркли (1685-1753). Было впервые опубликовано в мае 1710 г. в Дублине. Книга не вызвала большого интереса у читателей, а отдельные отклики носили сдержанно негативный характер. О философии автора заговорили только после публикации «Алсифрона...» (1732), и Беркли тогда решил переиздать «Трактат...», что он и осуществил в Лондоне в 1734 г. Еще одно переиздание «Трактата...» состоялось в 1776 г., после чего он публикуется во всех собраниях сочинений Беркли, начиная с 1784 г.

Массовому советскому читателю книга Беркли известна, в осном, по её критике В.И. Лениным в работе «Материализм и эмпириокритицизм».

Трактат о принципах человеческого знания - читать онлайн бесплатно полную версию (весь текст целиком)

Трактат о принципах человеческого знания - читать книгу онлайн бесплатно, автор Джорж Беркли
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Если кто-нибудь из людей обладает способностью образовать в своем уме идею треугольника, подобную той, какая здесь описана, то бесполезно стараться спорить с ним, да я и не берусь за это. Мое желание ограничивается только тем, чтобы читатель вполне очевидно убедился в том, имеет ли он такую идею или нет, а это, я полагаю, ни для кого не составит трудноразрешимой задачи. Что может быть легче для каждого, чем немного вникнуть в свои собственные мысли и затем испытать, может ли он достигнуть идеи, которая соответствовала бы данному здесь описанию общей идеи треугольника, который ни косоуголен, ни прямоуголен, ни равносторонен, ни равнобедрен, ни неравносторонен, но который есть вместе и всякий, и никакой из них .

14.Здесь много сказано о затруднениях, связанных с абстрактными идеями, а также о труде и искусстве, необходимых для образования этих идей. И все согласны в том, что требуется большая работа и напряжение ума для того, чтобы освободить наши мысли от частных предметов и вознести их до тех высоких умозрений, которые относятся к абстрактным идеям. Естественный вывод из всего этого, по-видимому, тот, что столь трудное дело, как образование абстрактных идей, не необходимо для общения между людьми (которое столь легко и привычно для всех родов людей). Но нам говорят, что если оно кажется доступным и легким для взрослых людей, то единственно потому, что оно стало таким вследствие обычного и постоянного употребления . Однако мне очень хотелось бы знать, в какую пору люди занимаются преодолением этой трудности и снабжением себя этими необходимыми средствами словесного общения. Это не может происходить тогда, когда они уже взрослые, потому что в это время они, по-видимому, не сознают такого усилия; таким образом, остается предположить, что это составляет задачу их детства. И, конечно, большой и многократный труд образования абстрактных понятий будет признан очень тяжелой задачей для нежного возраста. Разве не трудно представить себе, что двое детей не могут поболтать между собой о своих сахарных бобах, погремушках и о прочих своих пустячках, не разрешив предварительно бесчисленного количества противоречий, не образовав таким путем в своих умах абстрактных общих идей и не связав их с каждым общим названием, которое они должны употребить?

15.Я не думаю также, чтобы абстрактные идеи были более нужны для расширения познания , чем для его сообщения. Сколько мне известно, особенно настаивают на том пункте, что всякое познание и доказательство совершается над общими понятиями, с чем я совершенно согласен; но при этом мне кажется, что такие понятия образуются не через абстрагирование вышеуказанным способом; общность состоит, насколько я понимаю, не в безусловной положительной природе или понятии чего-нибудь, а в отношении, которое она вносит в обозначаемые или представляемые ею частности, вследствие чего вещи, названия или понятия, будучи частными по своей собственной природе, становятся общими . Так, когда я доказываю какое-нибудь предложение, касающееся треугольников, то предполагается, что я имею в виду общую идею треугольника, что должно быть понимаемо не так, чтобы я мог образовать идею треугольника, который не будет ни равносторонним, ни неравносторонним, ни равнобедренным, но только так, что частный треугольник, который рассматривается мной, безразлично, будет ли он того или иного рода, одинаково заменяет или представляет собой все прямолинейные треугольники всякого рода и в этом смысле общ . Все это кажется очень ясным и не заключает в себе никакого затруднения.

16.Но тут возникает вопрос, каким образом мы можем знать, что данное предложение истинно о всех частных треугольниках, если мы не усмотрели его сначала доказанным относительно абстрактной идеи треугольника, одинаково относящейся ко всем треугольникам. Ибо из того, что была указана принадлежность некоторого свойства такому-то частному треугольнику, вовсе не следует, что оно в равной мере принадлежит всякому другому треугольнику, который не во всех отношениях тождествен с первым. Если я доказал, например, что три угла равнобедренного прямоугольного треугольника равны двум прямым углам, то я не могу отсюда заключить, что то же самое будет справедливо о всех прочих треугольниках, не имеющих ни прямого угла, ни двух равных сторон. Отсюда, по-видимому, следует, что для того, чтобы быть уверенными в общей истинности этого предложения, мы должны либо приводить отдельное доказательство для каждого частного треугольника, что невозможно, либо раз навсегда доказать его для общей идеи треугольника, которой сопричастны безразлично все частные треугольники и которая их все одинаково представляет. На это я отвечу, что, хотя идея, которую я имею в виду в то время, как произвожу доказательство, есть, например, идея равнобедренного прямоугольного треугольника, стороны которого имеют определенную длину, я могу тем не менее быть уверенным в том, что оно распространяется на все прочие прямолинейные треугольники, какой бы формы или величины они ни были, и именно потому, что ни прямой угол, пи равенство или определенная длина двух сторон не принимались вовсе в соображение при доказательстве. Правда, что диаграмма, которую я имею в виду, обладает всеми этими особенностями, но о них совсем не упоминалось при доказательстве теоремы. Не было сказано, что три угла потому равны двум прямым, что один из них прямой, или потому, что стороны, его заключающие, равной длины, чем достаточно доказывается, что прямой угол мог бы быть и косым, а стороны неравными, и тем не менее доказательство оставалось бы справедливым. Именно на этом основании я заключаю, что доказанное о данном прямоугольном равнобедренном треугольнике справедливо о каждом косоугольном и неравностороннем треугольнике, а не то, что доказательство относится к абстрактной идее треугольника. И здесь следует признать, что человек может рассматривать фигуру просто как треугольную, не обращая внимания на определенные свойства углов или отношения сторон. До этих пор он может абстрагировать; но это никогда не сможет послужить доказательством того, что он способен образовать противоречивую абстрактно-общую идею треугольника. Сходным образом мы можем рассматривать Питера [просто] как человека или как животное, не образуя вышеупомянутой абстрактной идеи человека или животного, когда не принимается во внимание то, что воспринимается [4] [4] Последние три предложения добавлены во 2-м издании (1731), но похожие мысли содержались уже в «Трех разговорах...». .

17.Было бы столь же неисполнимым, сколь и бесполезным делом следить за схоластиками, этими великими мастерами абстрагирования, по всем разнообразным запутанным лабиринтам заблуждений и прений, в которые, по-видимому, вовлекало их учение об абстрактных сущностях и понятиях. Сколько ссор и споров возникло из-за этих вещей, сколько ученой пыли поднято и равным образом какую пользу извлекло из всего этого человечество, слишком хорошо известно теперь, чтобы предстояла надобность о том распространяться. И было бы хорошо еще, если бы вредные последствия этого учения ограничивались только теми, кто с наибольшей силой признавал и себя его последователями. Если люди взвесят те великие труд, прилежание и способности, которые употреблены в течение стольких лет на разработку и развитие наук, и сообразят, что, несмотря на это, значительная, большая часть наук остается исполненной темноты и сомнительности, а также примут во внимание споры, которым, по-видимому, не предвидится конца, и то обстоятельство, что даже те науки, которые считаются основанными на самых ясных и убедительных доказательствах, содержат парадоксы, совершенно неразрешимые для человеческого понимания, и что в конце концов лишь незначительная их часть приносит человечеству кроме невинного развлечения и забавы истинную пользу, – если, говорю я, люди все это взвесят, то они легко придут к полной безнадежности и к совершенному презрению всякой учености. Но такое положение вещей, может быть, и прекратится при известном взгляде на те ложные начала, которые приобрели значение в мире и среди которых ни одно, как мне кажется, не оказало более широкого и распространенного влияния на мысли людей умозрения, чем это учение об абстрактных общих идеях, которое мы старались ниспровергнуть.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Джорж Беркли читать все книги автора по порядку

Джорж Беркли - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Трактат о принципах человеческого знания отзывы


Отзывы читателей о книге Трактат о принципах человеческого знания, автор: Джорж Беркли. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x