Карл Маркс - Собрание сочинений, том 20

Тут можно читать онлайн Карл Маркс - Собрание сочинений, том 20 - бесплатно ознакомительный отрывок. Жанр: Философия. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Собрание сочинений, том 20
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    3.8/5. Голосов: 101
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Карл Маркс - Собрание сочинений, том 20 краткое содержание

Собрание сочинений, том 20 - описание и краткое содержание, автор Карл Маркс, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Двадцатый том Сочинений К. Маркса и Ф. Энгельса составляют два главных произведения Энгельса — «Анти-Дюринг» и «Диалектика природы». Эти произведения были созданы в период с 1873 по 1883 год.

Собрание сочинений, том 20 - читать онлайн бесплатно ознакомительный отрывок

Собрание сочинений, том 20 - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Карл Маркс
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
* * *

√—1. — Отрицательные величины алгебры реальны лишь постольку, поскольку они соотносятся с положительными величинами, реальны лишь в рамках своего отношения к последним; взятые вне этого отношения, сами по себе, они носят чисто воображаемый характер. В тригонометрии и в аналитической геометрии, а также в построенных на них отраслях высшей математики, они выражают определенное направление движения, противоположное положительному направлению. Но синусы и тангенсы круга можно с одинаковым успехом отсчитывать как с первого, так и с четвертого квадранта и, таким образом, можно прямо заменить плюс на минус, и наоборот. Точно так же в аналитической геометрии можно отсчитывать абсциссы в круге, начиная либо с периферии, либо с центра, и вообще у всех кривых абсциссы можно отсчитывать от кривой в направлении, обозначаемом обыкновенно знаком минус, [или] в любом другом направлении, и тем не менее мы получаем правильное рациональное уравнение кривой. Здесь плюс существует только как необходимое дополнение минуса, и наоборот. Но алгебраическая абстракция рассматривает отрицательные величины как действительные, самостоятельные величины, имеющие значение также и вне отношения к некоторой большей, положительной величине.

* * *

Математика. Обыкновенному человеческому рассудку кажется нелепостью разлагать некоторую определенную величину, например бином, в бесконечный ряд, т. е. в нечто неопределенное. Но далеко ли ушли бы мы без бесконечных рядов или без теоремы о биноме?

* * *

Асимптоты. Геометрия начинает с открытия, что прямое и кривое суть абсолютные противоположности, что прямое полностью не выразимо в кривом, а кривое — в прямом, что они несоизмеримы между собой. И тем не менее уже вычисление круга возможно лишь в том случае, если выразить его периферию в виде прямых линий. В случае же кривых с асимптотами прямое совершенно расплывается в кривое и кривое в прямое, точно так же как расплывается представление о параллелизме: линии не параллельны, они непрерывно приближаются друг к другу и все-таки никогда не сходятся. Ветвь кривой становится все прямее, не делаясь никогда вполне прямой, подобно тому как в аналитической геометрии прямая линия рассматривается как кривая первого порядка с бесконечно малой кривизной. Сколь бы большим ни сделалось — х логарифмической кривой, у никогда не станет = 0.

* * *

Прямое и кривое. В дифференциальном исчислении они в конечном счете приравниваются друг к другу. В дифференциальном треугольнике, гипотенузу которого образует дифференциал дуги (если пользоваться методом касательных), эту гипотенузу можно рассматривать

«как маленькую прямую линию, являющуюся одновременно элементом дуги и элементом касательной», — все равно, будем ли мы рассматривать кривую как состоящую из бесконечно многих прямых линий или же «как строгую кривую; ибо, поскольку искривление в каждой точке М бесконечно мало, — последнее отношение элемента кривой к элементу касательной есть, очевидно, отношение равенства» .

Отношение здесь непрерывно приближается к отношению равенства, но приближается, сообразно природе кривой, асимптотическим образом, так как соприкасание ограничивается точкой, не имеющей длины. Тем не менее в конце концов принимается, что равенство кривой и прямой достигнуто (Боссю, «Дифференциальное и интегральное исчисление»,

Париж, год VI, т. I, стр. 149) [458]. В случае полярных кривых [459]дифференциальная воображаемая абсцисса принимается даже за параллельную действительной абсциссе, и на основе этого допущения производят дальнейшие действия, хотя обе пересекаются в полюсе; отсюда даже умозаключают о подобии двух треугольников, из которых один имеет один из своих углов как раз в точке пересечения тех двух линий, на параллелизме которых основывается все подобие! (фиг. 17) [460].

Когда математика прямого и кривого оказывается, можно сказать, исчерпанной, — новое, почти безграничное поприще открывается такой математикой, которая рассматривает кривое как прямое (дифференциальный треугольник) и прямое как кривое (кривая первого порядка с бесконечно малой кривизной). О метафизика!

* * *

Тригонометрия. После того как синтетическая геометрия до конца исчерпала свойства треугольника, поскольку последний рассматривается сам по себе, и не в состоянии более сказать ничего нового, перед нами благодаря одному очень простому, вполне диалектическому приему открывается некоторый более широкий горизонт. Треугольник более не рассматривается в себе и сам по себе, а берется в связи с некоторой другой фигурой — кругом. Каждый прямоугольный треугольник можно рассматривать как принадлежность некоторого круга: если гипотенуза = r, то катеты образуют синус и косинус; если один катет = r, то другой катет = tg, а гипотенуза = sec. Благодаря этому стороны и углы получают совершенно иные определенные взаимоотношения, которых нельзя было открыть и использовать без этого отнесения треугольника к кругу, и развивается совершенно новая, далеко превосходящая старую теория треугольника, которая применима повсюду, ибо всякий треугольник можно разбить на два прямоугольных треугольника. Это развитие тригонометрии из синтетической геометрии является хорошим примером диалектики, рассматривающей вещи не в их изолированности, а в их взаимной связи.

* * *

Тождество и различие — диалектическое отношение уже в дифференциальном исчислении, где dx бесконечно мало, но тем не менее действенно и производит все.

* * *

Молекула и дифференциал. Видеман (кн. III, стр. 636) [461]прямо противопоставляет друг другу конечное расстояние и молекулярное.

* * *
О ПРООБРАЗАХ МАТЕМАТИЧЕСКОГО БЕСКОНЕЧНОГО В ДЕЙСТВИТЕЛЬНОМ МИРЕ [462]

К стр. 17—18 : Согласие между мышлением и бытием. — Бесконечное в математике

Над всем нашим теоретическим мышлением господствует с абсолютной силой тот факт, что наше субъективное мышление и объективный мир подчинены одним и тем же законам и что поэтому они и не могут противоречить друг другу в своих результатах, а должны согласоваться между собой. Факт этот является бессознательной и безусловной предпосылкой нашего теоретического мышления. Материализм XVIII века вследствие своего по существу метафизического характера исследовал эту предпосылку только со стороны ее содержания. Он ограничился доказательством того, что содержание всякого мышления и знания должно происходить из чувственного опыта, и восстановил положение: nihil est in intellectu, quod non fuerit in sensu [463]. Только новейшая идеалистическая, но вместе с тем и диалектическая философия — в особенности Гегель — исследовала эту предпосылку также и со стороны формы. Несмотря на бесчисленные произвольные построения и фантастические выдумки, которые здесь выступают перед нами; несмотря на идеалистическую, на голову поставленную форму ее результата — единства мышления и бытия, — нельзя отрицать того, что эта философия доказала на множестве примеров, взятых из самых разнообразных областей, аналогию между процессами мышления и процессами природы и истории — и обратно — и господство одинаковых законов для всех этих процессов. С другой стороны, современное естествознание расширило тезис об опытном происхождении всего содержания мышления в таком смысле, что совершенно опрокинуты были его старая метафизическая ограниченность и формулировка. Современное естествознание признаёт наследственность приобретенных свойств и этим расширяет субъект опыта, распространяя его с индивида на род: теперь уже не считается необходимым, чтобы каждый отдельный индивид лично испытал все на своем опыте; его индивидуальный опыт может быть до известной степени заменен результатами опыта ряда его предков. Если, например, у нас математические аксиомы представляются каждому восьмилетнему ребенку чем-то само собой разумеющимся, не нуждающимся ни в каком опытном доказательстве, то это является лишь результатом «накопленной наследственности». Бушмену же или австралийскому негру вряд ли можно втолковать их посредством доказательства.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Карл Маркс читать все книги автора по порядку

Карл Маркс - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Собрание сочинений, том 20 отзывы


Отзывы читателей о книге Собрание сочинений, том 20, автор: Карл Маркс. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x