Карл Маркс - Собрание сочинений, том 20
- Название:Собрание сочинений, том 20
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Карл Маркс - Собрание сочинений, том 20 краткое содержание
Двадцатый том Сочинений К. Маркса и Ф. Энгельса составляют два главных произведения Энгельса — «Анти-Дюринг» и «Диалектика природы». Эти произведения были созданы в период с 1873 по 1883 год.
Собрание сочинений, том 20 - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Но процессы, совершенно аналогичные процессам исчисления бесконечно малых, имеют место не только при переходе из жидкого состояния в газообразное и наоборот. Когда движение массы как таковое прекратилось в результате толчка и превратилось в теплоту, в молекулярное движение, то что же произошло, как не дифференцирование движения массы? А когда молекулярные движения пара в цилиндре паровой машины суммируются в том направлении, что они на определенную высоту поднимают поршень, превращаясь в движение массы, то разве они здесь не интегрируются? Химия разлагает молекулы на атомы, величины, имеющие меньшую массу и протяженность, но представляющие собой величины того же порядка, что и первые, так что молекулы и атомы находятся в определенных, конечных отношениях друг к другу. Следовательно, все химические уравнения, выражающие молекулярный состав тел, представляют собой по форме дифференциальные уравнения. Но в действительности они уже интегрированы благодаря фигурирующим: в них атомным весам. Химия оперирует такими дифференциалами, взаимоотношение величин которых известно.
Но атомы отнюдь не являются чем-то простым, не являются вообще мельчайшими известными нам частицами вещества. Не говоря уже о самой химии, которая все больше и больше склоняется к мнению, что атомы обладают сложным составом, большинство физиков утверждает, что мировой эфир, являющийся носителем светового и теплового излучения, состоит тоже из дискретных частиц, столь малых, однако, что они относятся к химическим атомам и физическим молекулам так, как эти последние к механическим массам, т. е. относятся как d 2x к dx. Здесь, таким образом, в принятых в настоящее время представлениях о строении материи мы имеем перед собой также и дифференциал второго порядка, и ничто не мешает каждому, кому это доставляет удовольствие, предположить, что в природе должны быть еще также и аналоги для с?х, dtx и т. д.
Итак, какого бы взгляда ни придерживаться относительно строения материи, не подлежит сомнению то, что она расчленена на ряд больших, хорошо отграниченных групп с относительно различными размерами масс, так что члены каждой отдельной группы находятся со стороны своей массы в определенных, конечных отношениях друг к другу, а к членам ближайших к ним групп относятся как к бесконечно большим или бесконечно малым величинам в смысле математики. Видимая нами звездная система, солнечная система, земные массы, молекулы и атомы, наконец, частицы эфира образуют каждая подобную группу. Дело не меняется от того, что мы находим промежуточные звенья между отдельными группами: так, например, между массами солнечной системы и земными массами мы встречаем астероиды, — из которых некоторые имеют не больший диаметр, чем, скажем, княжество Рейс младшей линии [465], — метеориты и т. д.; так, между земными массами и молекулами мы встречаем в органическом мире клетку. Эти промежуточные звенья доказывают только, что в природе нет скачков именно потому, что она слагается сплошь из скачков.
Когда математика оперирует действительными величинами, она тоже без дальних околичностей применяет это воззрение. Для земной механики уже масса Земли является бесконечно большой; в астрономии земные массы и соответствующие им метеориты выступают как бесконечно малые; точно таким же образом исчезают для нее расстояния и массы планет солнечной системы, лишь только астрономия, выйдя за пределы ближайших неподвижных звезд, начинает изучать строение нашей звездной системы. Но как только математики укроются в свою неприступную твердыню абстракции, так называемую чистую математику, все эти аналогии забываются; бесконечное становится чем-то совершенно таинственным, и тот способ, каким с ним оперируют в анализе, начинает казаться чем-то совершенно непонятным, противоречащим всякому опыту и всякому смыслу. Те глупости и нелепости, которыми математики не столько объясняли, сколько извиняли этот свой метод, приводящий странным образом всегда к правильным результатам, превосходят самое худшее, действительное и мнимое, фантазерство натурфилософии (например, гегелевской), по адресу которого математики и естествоиспытатели не могут найти достаточных слов для выражения своего ужаса. Они сами делают — притом в гораздо большем масштабе — то, в чем они упрекают Гегеля, а именно доводят абстракции до крайности. Они забывают, что вся так называемая чистая математика занимается абстракциями, что все ее величины суть, строго говоря, воображаемые величины и что все абстракции, доведенные до крайности, превращаются в бессмыслицу или в свою противоположность. Математическое бесконечное заимствовано из действительности, хотя и бессознательным образом, и поэтому оно может быть объяснено только из действительности, а не из самого себя, не из математической абстракции. А когда мы подвергаем действительность исследованию в этом направлении, то мы находим, как мы видели, также и те действительные отношения, из области которых заимствовано математическое отношение бесконечности, и даже наталкиваемся на имеющиеся в природе аналоги того математического приема, посредством которого это отношение проявляется в действии. И тем самым вопрос разъяснен.
(Плохое воспроизведение тождества мышления и бытия у Геккеля. Но и противоречие непрерывной и дискретной материи; см. у Гегеля) [466].
Лишь дифференциальное исчисление дает естествознанию возможность изображать математически не только состояния, но и процессы: движение.
Применение математики: в механике твердых тел абсолютное, в механике газов приблизительное, в механике жидкостей уже труднее; в физике больше в виде попыток и относительно; в химии простейшие уравнения первой степени; в биологии = 0.
[МЕХАНИКА И АСТРОНОМИЯ]
Пример необходимости диалектического мышления и того, что в природе нет неизменных категорий и отношений: закон падения, который становится неверным уже при продолжительности падения в несколько минут, ибо в этом случае уже нельзя без ощутительной погрешности принимать, что радиус Земли = да,и притяжение Земли возрастает, вместо того чтобы оставаться равным самому себе, как предполагает закон падения Галилея. Тем не менее, этот закон всё еще продолжают преподавать без соответствующих оговорок!
Ньютоновское притяжение и центробежная сила — пример метафизического мышления: проблема не решена, а только поставлена, и это преподносится как решение. — То же самое относится к рассеянию теплоты [Warmeabnahme] по Клаузиусу [467].
Читать дальшеИнтервал:
Закладка: