Бертран Рассел - Человеческое познание его сферы и границы
- Название:Человеческое познание его сферы и границы
- Автор:
- Жанр:
- Издательство:Ника-Центр, Институт общегуманитарных исследований
- Год:2001
- Город:Москва
- ISBN:5-88230-011-8, 966-521-093-9
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Бертран Рассел - Человеческое познание его сферы и границы краткое содержание
"Человеческое познание, его сфера и границы" — лучшее произведение лорда Бертрана Артура Уильяма Рассела (1872–1970), оставившего яркий след в английской и мировой философии, логике, социологии, политической жизни. Он является основоположником английского неореализма, "логического атомизма" как разновидности неопозитивизма.
Человеческое познание его сферы и границы - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
В применении результатов математического исчисления вероятности к степеням правдоподобия мы должны тщательно выполнять два условия. Во-первых, случаи, которые образуют основу математического перечисления, все должны быть равно правдоподобны по свидетельству в их пользу; во-вторых, свидетельство должно включать все наше относящееся к нему знание. Следует сказать несколько слов в отношении первого из этих условий.
Каждое математическое исчисление вероятности начинает с какого-либо основоположного класса, вроде определенного числа бросаний монеты, определенного числа бросаний игральных костей, колоды карт, совокупности шаров в сумке. Каждый член этого основоположного класса считается за единицу. Из него вывели другие логически производные классы, например класс n последовательностей 100 бросаний монеты. Из этих n последовательностей мы можем выделить подкласс бросаний, состоящий из 50 выпадений монеты лицевой стороной и 50 — упавших оборотной стороной. Или, взяв колоду карт, мы можем образовать класс возможных «игроков», то есть наборов из 13 карт, и далее исследовать, какие из них содержат 11 карт одной масти. Дело в том, что частоты исчисляются, всегда применяются к классам, имеющим какую-то структуру, определяемую логически по отношению к основоположному классу, тогда как основоположный класс в целях разрешения проблемы рассматривается как состоящий из членов, не имеющих логической структуры, то есть их логическая структура не относится к делу.
Пока мы ограничиваемся исчислением частоты выпадений, то есть математической теорией вероятностей, мы можем взять любой класс в качестве основоположного класса и исчислять частоты по отношению к нему. При этом нет необходимости делать предположение, что все члены класса равно вероятны; все, что нам нужно сказать, это то, что для данной цели каждый член класса должен рассматриваться как единица. Но когда мы хотим определить степени правдоподобия, необходимо, чтобы наш основной класс состоял из предложений, которые все одинаково правдоподобны в отношении свидетельства в их пользу. «Неделимость» Кейнса имеет целью обеспечить это. Я предпочел бы сказать, что члены основоположного класса должны иметь «относительную простоту», то есть они не должны иметь структуры, определяемой в терминах исходных данных. Возьмем, например, белые и черные шары в сумке. Каждый шар в действительности имеет невероятно сложную структуру, поскольку он состоит из миллиардов молекул: но это не имеет никакого отношения к нашей проблеме. С другой стороны, совокупность m шаров, выбранных из основоположного класса n шаров, имеет логическую структуру по отношению к основоположному классу. Если каждый член основоположного класса имеет название, то каждый подкласс, состоящий из m членов, может быть определен. Все исчисления вероятности имеют дело с классами, которые могут быть определены в терминах основоположного класса. Но сам основоположный класс должен состоять из членов, которые не могут быть логически определены в терминах исходных данных. Я думаю, что когда это условие выполняется, то принцип индифферентности всегда удовлетворяется.
В этом пункте, однако, нужна осторожность. Имеются два пути, когда предложение «а есть а» может стать вероятным или (1) потому, что достоверно, что а принадлежит к классу, большинство членов которого суть а, или (2) потому, что вероятно, что а принадлежит к классу, все члены которого суть а. Например, мы можем сказать: «Г-н А, вероятно, смертен», если мы уверены, что большинство людей смертны, или если мы имеем основание считать вероятным, что все люди смертны. Когда мы бросаем игральные кости, мы можем сказать: «Вероятно, не выпадет двойной шестерки», — потому что мы знаем, что большинство бросаний не дает двойной шестерки. С другой стороны, предположим, что я имею свидетельство, дающее основание для предположения, но не доказывающее, что при определенной болезни всегда бывает определенная бацилла; я могу тогда сказать, что когда имеется эта болезнь, то, вероятно, есть и эта бацилла. В каждом из двух вышеприведенных случаев мы имеем что-то вроде силлогизма. В первом случае:
Большинство А есть В
Это есть А
Следовательно, это, вероятно, есть В.
Во втором случае:
Вероятно, все А суть В
Это есть А
Следовательно, это, вероятно, есть В.
Второй случай, однако, труднее свести к частоте. Исследуем, возможно ли это.
В некоторых случаях это явно возможно. Например, большинство слов английского языка не содержит буквы z. Следовательно, если возьмем наудачу какое-либо слово, то вероятно, что ни одна из его букв не будет г. Таким образом, если А — класс букв в данном слове, а В — класс букв, кроме буквы z, то мы получим случай нашего второго псевдосиллогизма. Слово, конечно, должно быть определено каким-либо способом, который пока оставляет нас в неведении относительно того, какое это слово; например, слово должно быть определено как 8000-е слово в «Гамлете» или как третье слово на 248-й странице «Concise Oxford Dictionary. При том, что вы, допустим, в настоящее время не знаете, что представляют собой эти слова, вы поступите разумно, если будете утверждать, что они не содержат буквы z.
Во всех случаях нашего второго псевдосиллогизма ясно, что то, что я назвал «основоположным классом», дается как класс классов, и, следовательно, его логическая структура имеет большое значение. Обобщим приведенный выше пример: пусть К будет классом классов, таким, что большинство его членов полностью содержится в некотором классе бета; тогда из предложений «x есть альфа» и «альфа есть k» мы можем заключить, что «х, вероятно, есть бета». (В приведенном выше примере k есть класс слов, альфа — класс букв в определенном слове и бета — алфавит без буквы z). Странно то, что, обозначая через сумма членов k» класс членов членов k, наши посылки оказываются недостаточными для того, чтобы доказать, что какой-либо член суммы k, вероятно, есть член класса p. Например, пусть k состоит из трех слов Strength, Quail, Muck — вместе со всеми словами, не содержащими ни одной буквы, содержащейся в любом из этих трех слов. Тогда сумма k состоит из всех букв алфавита, возможно, за исключением z. Должно ли z включаться в алфавит, это зависит от того, считается ли «Zoo» (сокращенное «зоопарк») словом. Но предложение «k есть а и а есть k» делает вероятным, что х не является одной из букв, содержащихся в вышеприведенных трех словах, тогда как предложение «х есть член суммы х» не делает это вероятным. Это иллюстрирует те сложности, которые возникают, когда основоположный класс имеет относящуюся к вероятностям структуру. Но в случаях, вроде вышеприведенных, все же можно измерить правдоподобие с помощью частоты, хотя и менее простым способом.
Читать дальшеИнтервал:
Закладка: