Бертран Рассел - Человеческое познание его сферы и границы
- Название:Человеческое познание его сферы и границы
- Автор:
- Жанр:
- Издательство:Ника-Центр, Институт общегуманитарных исследований
- Год:2001
- Город:Москва
- ISBN:5-88230-011-8, 966-521-093-9
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Бертран Рассел - Человеческое познание его сферы и границы краткое содержание
"Человеческое познание, его сфера и границы" — лучшее произведение лорда Бертрана Артура Уильяма Рассела (1872–1970), оставившего яркий след в английской и мировой философии, логике, социологии, политической жизни. Он является основоположником английского неореализма, "логического атомизма" как разновидности неопозитивизма.
Человеческое познание его сферы и границы - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Временно, однако, я откладываю эту проблему, чтобы исследовать вопрос, существуют ли общие факты, соответствующие истинным общим предложениям; и что делает общие предложения истинными, когда они действительно истинны, если отвергнуть общие факты. Если бы этот вопрос был решен, было бы легче узнать, как мы приходим к образованию истинных общих предложений.
Существуют ли общие факты? Мы можем поставить этот вопрос следующим образом: допустим, что я знаю об истинности или ложности всякого предложения, не содержащего слово «все», или слово «некоторые», или какого-либо эквивалента каждого из этих слов. Что в таком случае представляет собой то, чего я не знаю? Будет ли то, чего я не знаю, чем-то относящимся только к моему познанию и вере или это будет чем-то не относящимся к ним? Я могу сказать: «Браун здесь», «Джоунз здесь», «Робинсон здесь», но не могу сказать: «Некоторые люди здесь», ещё менее того: «Ровно три человека находятся здесь» или «Каждый человек, находящийся здесь, называется «Браун», или «Джоунз», или «Робинсон». Хотя я и знаю об истинности или ложности каждого из приведенных предложений, мое знание все же не обладает полнотой. Если бы я знал, что мой перечень полон, я мог бы вывести, что здесь находятся всего три человека, но на самом деле я не знаю, что здесь нет других.
Попробуем выразить яснее то, что здесь имеется в виду. Когда был открыт Антарктический континент, было познано то, что уже существовало до того, как о нем узнали; это познание было отношением между воспринимающим и чем-то, что не зависело от восприятия и вообще от существования жизни на земле. Есть ли здесь какая-нибудь аналогия с отношением между истинными предложениями со словом «все» и предложениями со словом «некоторые», например предложением: «В Антарктике имеются вулканы»?
Назовем знание об истинности или ложности каждого предложения, не содержащего общих слов, «всеведением первого порядка». «Ограниченное всеведение первого порядка» будет обозначать такое же полное знание о всех предложениях определенной формы — скажем, формы: «х есть человек».
Нам нужно исследовать, чего не знает человек при всеведении первого порядка.
Можем ли мы сказать, что единственное, чего он не знает, есть то, что его знание обладает полнотой всеведения первого порядка? Если это так, то это относится к его познанию, а не к фактам, независимым от познания. Можно было бы сказать, что он знает все, кроме того, что больше нечего знать; это значило бы, что не существует неизвестных ему, независимых от познания фактов.
Разберем теперь случай ограниченного всеведения первого порядка. Рассмотрим предложения формы «х — человек» и «X смертен» и предположим, что некий многознающий человек знает, являются ли эти предложения истинными или ложными для всякого значения «х», для которого эти предложения имеют смысл, но не знает (что фактически верно), что не существует других значений «X», для которых эти предложения имеют смысл. Допустим, что A B, C… Z суть значения «x», для которых предложение «x — человек» является истинным, и предположим, что, для каждого из этих значений предложение «х смертен» является истинным. Тогда предложения «A смертен», «B смертен»… «Z смертен», взятые вместе, являются фактически эквивалентными предложению: «Все люди смертны», это значит, что если одно из них истинно, то истинно и другое, и наоборот. Но наш многознающий человек не знает этой эквивалентности. Во всяком случае, эквивалентность предполагает конъюнкцию предложений «A смертен», «B смертен»… «Z смертен»; это значит, что она предполагает предложение, построенное путем повторения слова «и», которое истолковывается так же, как и слово «или».
Отношение между «и» и «или» — особого рода. Когда я утверждаю «p и q», можно думать, что я утверждаю «p» и утверждаю «q» так, что «и» в предложении «p и q» кажется ненужным. Но если я отрицаю «p и q», то я утверждаю «не — p или не — q» так, что «или» оказывается необходимым для истолкования ложности конъюнкции. Наоборот, когда я отрицаю «p или q», я утверждаю «не — p и не — q» так, что конъюнкция нужна для истолкования ложности дизъюнкции. Таким образом «и» и «или» взаимозависимы; каждое из них может быть определено с помощью другого плюс «не». Действительно «и», «или» и «не» — все могут быть определены с помощью «не — p или не — q» и «не — p и не — q».
Ясно, что предложения со словом «все» аналогичны конъюнкции, а предложения со словом «некоторые» — дизъюнкции.
Возвращаясь к предложению: «Все люди смертны», позволим нашему многознающему человеку понимать значение «и», «или» и «не», но предположим, что он не в состоянии понять значение «все» и «некоторые». Предположим далее, как и раньше, что A, B, C… Z исчерпывают всех людей и что наш многознающий человек знает, что «A смертен, и B смертен, …и Z смертен»; но, поскольку он не знает слова «все», он не знает, что «A, B, C… Z исчерпывают всех людей». Назовем это предложение «P», Нас касается вопрос: чего именно он не знает, не зная P?
В математической логике P истолковывается следующим образом: «При любом значении x будет верно, что или x не человек, или x есть A, или x есть B, или… x есть Z. Это можно истолковать и иначе: «При любом значении x конъюнкция: «x — человек, и x не есть A, и x не есть B, и… х не есть Z» — оказывается ложной. Каждое из этих предложений есть утверждение обо всем во вселенной, но вместе с тем кажется абсурдным предполагать, что мы можем знать обо всем во вселенной. В случае, например, со «всеми людьми» имеется вполне реальное сомнение, поскольку могут быть люди и на какой-нибудь планете какой-нибудь другой звезды. Но как обстоит дело с предложением: «Все люди в этой комнате?»
Теперь мы предположим, что A, B, C суть все люди в этой комнате, что я знаю, что «A находится в этой комнате», «B находится в этой комнате», «C находится в этой комнате», что я понимаю значение слов «и», и «или», и «не», но не понимаю значения слов «все» или «некоторые», так что я не могу знать, что «A и B и C суть все люди, находящиеся в той комнате». Назовем это предложение Q. Чего я не знаю, не зная Q?
Математическая логика, интерпретируя Q, имеет в виду опять-таки все во вселенной и раскрывает Q в форме: «При любом значении х верно, что или x не в комнате, или x не человек, или x есть A, или x есть B, или x есть C»; или: «При любом значении х верно, что если x не есть A, и x не есть B, и x не есть C, то х не есть человек или x не находится в этой комнате». Но в этом случае логистическая интерпретация, хотя и удобная технически, кажется явно абсурдной психологически, так как для того, чтобы знать, кто находится в этой комнате, мне, очевидно, совсем не нужно знать, что находится за её пределами. Как же в таком случает следует интерпретировать Q?
Читать дальшеИнтервал:
Закладка: