Г Гутнер - Онтология математического дискурса
- Название:Онтология математического дискурса
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Г Гутнер - Онтология математического дискурса краткое содержание
Онтология математического дискурса - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Последнее утверждение представляется, по-видимому, слишком категоричным. Прямую или окружность можно провести и в воображении. Заметим однако, что несмотря на такую возможность почти всегда, даже при рассмотрении элементарных понятий предпочитают пользоваться чертежами. Это обстоятельство представляется нам важным, вытекающим из сути математического дискурса, а отнюдь не из слабости нашей памяти. Мы вернемся к этой проблеме позже, а сейчас заметим лишь, что синтетическое суждение, высказываемое в постулате, подразумевает не только возможность, но и действительность обсуждаемого объекта. Нам предстает не только понятие и образ, но также и чувственно воспринимаемый единичный предмет, который согласуется не только с формальными, но и с материальными условиями опыта.
Мы будем придерживаться той интерпретации "Начал" Евклида, о которой упоминает, например, Фридман ([72], c. 88-89). Согласно этой интерпретации постулаты вводят ряд элементарных операций (построений), которые рассматриваются как заведомо выполнимые. Любое другое построение будет выполнимым, если оно представляет собой последовательность этих элементарных операций. (Естественно, что при дальнейшем изложении геометрии вместо элементарных операций могут фигурировать и более сложные построения, выполнимость которых показана ранее.) К развертыванию такой последовательность выполнимых операций сводится не только решение задач на построение, но и доказательство теорем. Всякое геометрическое предложение формулируется как некоторое общее утверждение. Это значит, что в нем предполагается возможность какого-либо понятия. Важно увидеть, что в любом предложении (т.е. в синтетическом суждении) речь идет именно об одном понятии. Добавляя к субъекту новый предикат, мы не устанавливаем отношение двух понятий, а создаем одно новое. Например, когда мы утверждаем, что сумма внутренних углов треугольника равна двум прямым, то предполагаем реальную возможность треугольника, обладающего названным признаком, т.е. мы говорим, что понятие "треугольник, сумма внутренних углов которого равна двум прямым" возможно. Выражение в кавычках неудачно в том смысле, что создает впечатление будто равенство суммы углов указанной величине есть некий различительный признак, выделяющий определенный вид в роде треугольников. Последнее, конечно же, неверно. Синтетическое суждение, являющееся содержанием приведенной теоремы, создает новое понятие, которое мы попытались назвать с помощью приведенного здесь несколько неуклюжего выражения. Это понятие нетождественно понятию треугольника, т.к. предикат не выводится из понятия субъекта. Он присоединяется к нему в процессе синтеза.
Проводимое далее доказательство, призванное показать реальность возможности обсуждаемого понятия, как раз и заключается в развертывании синтеза. Нам необходимо предъявить какую-либо построенную по правилам конструкцию, соответствующую понятию, реальная возможность которого доказывается. Конструкция должна быть сооружена в результате ряда действий, предписанных постулатами. Последовательность применения постулатов составляет схему рассматриваемого понятия, а возможность понятия будет установлена, когда будет завершено построение конструкции. Иными словами, возможность понятия будет установлена, когда мы предъявим соответствующий этому понятию единичный предмет, воспринимаемый чувствами. Чтобы более точно рассмотреть взаимодействие возможного и действительного при доказательстве, нам представляется уместным развернуть процедуру доказательства подробнее, описав ее в тех терминах, которые использовались еще в античности.
2 Структура доказательства у Евклида в связи с категориями модальности
Сейчас при изложении требующих доказательства предложений в математической литературе явно выделяются две части: формулировка предложения и его доказательство. Для античных авторов дело обстояло иначе. В изложении теоремы выделялось пять или шесть частей.(См. примечание 3)Этот способ структурирования процедуры доказательства оказывается очень уместным для правильного понимания соотношения возможного и действительного, а также общего и единичного в математическом рассуждении. Хинтикка [74] утверждает, что структура доказательства у Евклида явилась парадигмой для Канта.
Охарактеризуем кратко эти шесть частей изложения теоремы, используя в качестве примера упомянутую выше теорему о внутренних углах треугольника.
1. Утверждение (protasis) дает общую формулировку теоремы. В нашем случае эта первая часть теоремы выглядит так: сумма внутренних углов треугольника равна двум прямым.
2. Экспозиция (ekqesis) указывает на единичный предмет, общее понятие которого дано в утверждении. Для геометрии естественно в этой части теоремы дать чертеж.
Пусть ABC - произвольный треугольник.
3. Ограничение или детерминация (diorismos) состоит в переформулировании общего утверждения для представленного в экспозиции единичного предмета: сумма углов 1, 2 и 3 равняется двум прямым.
4. Построение (kataskeuh) - это то, что сейчас обычно называют дополнительным построением. В нашем случае оно выглядит так:
проведем через вершину B прямую, параллельную основанию AC. 5. Доказательство (apodeixis) представляет собой последовательность логических выводов об элементах конструкции, представленной в предыдущей части. Эта последовательность должна завершиться утверждением, представленном в части 3. Для рассматриваемой нами теоремы имеет место следующий ряд заключений.
Угол 1 равен углу 4, а угол 3 равен углу 5 как накрест лежащие при пересечении пары параллельных прямых третьей.
Углы 4, 2, 5 в сумме составляют один развернутый, а потому их сумма равна двум прямым.
Из двух этих утверждений следует, что сумма углов 1, 2 и 3 также равна двум прямым.
6. Заключение (sumperasma) обобщает вывод, полученный в доказательстве, повторяя формулировку первой части:
итак, сумма внутренних углов треугольника равна двум прямым. В предыдущем параграфе мы уже обсудили смысл утверждения теоремы. Оно содержит общее синтетическое суждение. Впрочем, назвать его в полном смысле синтетическим еще нельзя. Хотя оно и присоединяет предикат к субъекту, создавая тем самым новое понятие, синтез еще не проведен. У нас нет пока уверенности в том, что названное в protasis понятие соответствует формальным условиям опыта. Иными словами мы пока только предполагаем возможность понятия.
Ekqesis совершает переход от общего понятия к единичному объекту. С него начинается процедура конструирования. Вместо возможного треугольника (т.е. треугольника вообще) нам предстает действительный треугольник. Согласно Канту, такое выделение единичности составляет необходимый момент математического рассуждения. "..Математика ничего не может достигнуть посредством одних лишь понятий и тотчас спешит перейти к наглядному представлению, рассматривая понятие in concreto, однако не в эмпирическом наглядном представлении, а в таком, которое a priori установлено ею, т.е. конструировано, и в котором то, что следует из общих условий конструирования, должно иметь общее значение также и в отношении к объекту конструируемого понятия" (B744). Следует обратить внимание на точность кантовского выражения: "тотчас спешит перейти к наглядному представлению". В самом деле, сразу после формулировки общего утверждения начинается конструирование чувственно созерцаемого предмета. Иными словами происходит актуализация того, что в protasis фигурировало только как возможное. В ekqesis она (актуализация) в известном смысле беспроблемна, т.к. конструируется то понятие, возможность которого уже установлена. Здесь лишь воспроизводится синтез, проведенный ранее, поэтому мы имеем в распоряжении регулярный способ предъявления единичного предмета, соответствующего данному понятию (в нашем случае - понятию треугольника).
Читать дальшеИнтервал:
Закладка: