Г Гутнер - Онтология математического дискурса
- Название:Онтология математического дискурса
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Г Гутнер - Онтология математического дискурса краткое содержание
Онтология математического дискурса - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
3 Необходимость и случайность
Пока что мы не касались третьей из категорий модальности - необходимости. Обращение к ней требует от нас дополнительных разъяснений, ибо возникает подозрение, что все предыдущее рассуждение содержит какую-то путаницу с категориями. В самом деле, разве доказательство теоремы устанавливает возможность суждения? Не лучше ли сказать, что она устанавливает его необходимость? Совершенно естественно и неоспоримо, в частности, что сумма внутренних углов треугольника необходимо равняется двум прямым. Утверждение, что упомянутая сумма возможно равна двум прямым, звучит по меньшей мере странно. Прежде всего, укажем на два различных (хотя и близких) понимания возможности. Допустимо (и вполне естественно) говорить о возможном, как о горизонте всех явлений, которые могут при определенных условиях возникнуть. Например, речь может идти о спектре различных свойств, которыми может обладать вещь (точнее о спектре признаков, которые могут быть присоединены к данному понятию). Треугольник может быть равнобедренным или вписанным в окружность. Но может и не быть. Но сумма его внутренних углов равна двум прямым всегда. Этого не может не быть. Это - необходимое свойство. В противоположность ему два других - случайные. Может так случиться, например, что треугольник вписан в окружность.
Как, однако, удостовериться в возможности, понимаемой в названном только что смысле? Как, уж если мы обратились к такому примеру, выяснить, что треугольник можно вписать в окружность. Процедура выяснения, оказывается, ничем не будет отличаться от той, которая выполнялась при установлении необходимого свойства. Мы должны будет установить, что понятие "треугольник, вписанный в окружность," согласуется с формальными условиями опыта, т.е. предъявить необходимый синтез настоящего понятия. Говоря более конкретно, нужно, сформулировав сначала общее суждение о возможности (protasis), мы должны будем затем начертить треугольник (ekqesis). После этого общее суждение о возможности будет переформулировано применительно к единичному предмету (diorismos - вокруг построенного треугольника ABC может быть описана окружность l). После этого мы проведем серединные перпендикуляры к двум сторонам треугольника (kataskeyh), докажем, что точка их пересечения - центр окружности, проходящей через вершины треугольника (apodeixis), и сделаем окончательный вывод об истинности исходного утверждения (sumperasma).
Таким образом, возможность и необходимость оказываются категориями достаточно близкими. Впрочем, речь пока что должна, по-видимому, идти о двух разных пониманиях возможности. Когда мы обсуждали категорию возможности в предыдущем параграфе, мы говорили о возможности в противопоставлении действительности. Мы указывали, что треугольник (с суммой внутренних углов равной p) является возможным понятием, поскольку может быть построен. Мы всегда можем предъявить соответствующее ему созерцание, т.е. создать конструкцию согласно определенной схеме. Этим названное понятие ничем не отличается от таких, как "равнобедренный треугольник", или "треугольник, вписанный в окружность". Каждое из них обнаруживает себя как реальное тогда, когда проведена процедура синтеза и предъявлена соответствующая актуализация. Здесь мы поэтому говорим о несколько иной интерпретации той же самой категории. Важно, впрочем, что для обеих интерпретаций требуется проведение всей полноты синтеза.
Так что устанавливая необходимость какого-либо положения дел, мы одновременно показываем возможность некоторого понятия. С другой стороны, выясняя возможность чего-либо, мы обнаруживаем необходимую связь актуализируемых при этом понятий. Так, когда мы проводим процедуру, призванную показать возможность понятия "треугольник, вписанный в окружность," мы одновременно доказываем, например, такое (необходимое) утверждение: "Точка пересечения серединных перпендикуляров, проведенных к сторонам треугольника, есть центр описанной вокруг него окружности".
Возможность и необходимость устанавливаются при одинаковых обстоятельствах, но относятся к разному. Возможность относится к одному понятию, тому, которое конструируется в синтетическом суждении. Необходимость относится к связи понятий. Понятие или предмет не могут быть необходимыми. Необходимым может быть какое-то положение дел: связь понятий или отношение объектов.
Говоря о возможном, мы всегда подразумеваем случайность. То, что возможно, может и не произойти. Треугольник может быть и не вписан в окружность, хотя такое возможно. К чему относится это указание на случайность? Оно относится к некоторому событию, а именно событию актуализации данного понятия, т.е. событию построения. Точнее, здесь нужно говорить о ряде событий, после которых появляются на свет какие-то новые конструкции. Что такое событие не одно, следует из структуры теоремы, в которой различены ekqesis и kataskeuh. Возможное возможно, поскольку оно может случиться. Но к этому моменту случайности относится и указание на необходимость. Некоторое положение дел необходимо, если возникает всякий раз, когда нечто случится. Всякий раз, когда треугольнику случится быть вписанным в окружность, центр этой описанной окружности совпадет с точкой пересечения серединных перпендикуляров. Установление необходимости требует указания случая.
Обратим внимание, что выражение возможности и необходимости требует, строго говоря, различных суждений. Возможность фиксируется категорическим суждением, конструирующим новое понятие. Необходимость фиксируется гипотетическим суждением, указывающим на условие, при котором неизбежно наступает некоторое положение дел.
Сказанное легко проследить на примере теоремы о сумме внутренних углов. Внутренние углы треугольника необходимо составляют в сумме два прямых, но для этого треугольнику еще нужно случиться. Треугольник - возможное понятие. Его можно нарисовать, а можно и не рисовать. Необходимость названного равенства обнаруживается лишь при условии наступления определенного события.
В нашем рассмотрении сейчас оказалось задействовано три элемента математического дискурса. (Впрочем, по-видимому, не только математического.) Эти элементы суть понятие, единичный предмет и событие. Рассматриваемые нами категории модальности относятся, вообще говоря к разным из названных элементов. Возможность (по крайней мере, до сих пор) всегда подразумевала понятие. Действительность - единичный предмет. Необходимость описывает отношение понятий, а случайность - событие. Последнее представляет собой единичность иного рода, чем предмет (или объект). В нашем рассуждении в качестве событий выступали экспозиция и построение. Именно они случаются. Именно относительно них не может быть предъявлено никаких гарантий - они могут и не произойти. Познание необходимости требует, таким образом довольно тонкого перехода от общего к единичному, поскольку в необходимом суждении фиксируется связь общих понятий, но как условие этой связи выступает единичное (случайное) событие. Смысл этого перехода раскрывается Кантом в кратком замечании о схеме необходимости (B184): "Схема необходимости есть существование предмета во всякое время" (курсив наш). Необходимость, таким образом, устанавливается вследствие произвольности момента события. Она состоит в том, что когда бы ни произошло событие, ему обязательно будет сопутствовать некоторое (причем всегда одно и то же) положение дел.
Читать дальшеИнтервал:
Закладка: