Э Лийв - Инфодинамика, Обобщённая энтропия и негэнтропия
- Название:Инфодинамика, Обобщённая энтропия и негэнтропия
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Э Лийв - Инфодинамика, Обобщённая энтропия и негэнтропия краткое содержание
Инфодинамика, Обобщённая энтропия и негэнтропия - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
В результате растут такие направления увеличения ОЭ, с которым сознание пока не справляется:
преступность и разрушительные войны;
экономические преступления, банкроты, кризисы;
природные катастрофы, стихийные бедствия, исчер-пание природных ресурсов;
нарушение экологических условий, болезни;
социальная несправедливость, отсутствие стимулов;
сознательная дезинформация или препятствия при распространении информации;
стрессовые ситуации и конфликты между людьми, неконтролируемый прирост народонаселения.
Общественное сознание и модели должны отражать такую же борьбу между явлениями ОЭ и ОНГ, как это происходит в мире первичной реальности. Если государство своими законами и контролем за их исполнением не может обеспечить распределение ресурсов по результатам труда, тогда и люди сразу найдут возможности жить без ре-зультативного труда. Растёт беспорядок, косвенная эконо-мическая преступность. В сознании людей и в экономике от-ражается эта неопределённость, безвыходность и неспра-ведливость. Единственным выходом является увеличение в первой очереди ОНГ общественного сознания, а через его и вообще ОНГ первичной реальности человеческой циви-лизации.
3. ИНФОРМАЦИОННЫЕ МОДЕЛИ.
ВТОРИЧНАЯ РЕAЛЬНОСТЬ.
СОЗНАНИЕ
Ранее указывалось, что после принятия информации увеличивается негэнтропия системы. Представляет интерес, по какому механизму происходит увеличение ОНГ, как в дальнейшем используется и перерабатывается информация. Чем сложнее принимающие информацию системы, тем эф-фективнее они могут её использовать [ 20 ]. В зависимости от сложности системы возникает соответствующая информа-ционная модель [ 9, 45, 66 ]. Во всяком случае, принятие информации не является только отражением (копированием) состояния системы-отправителя, а процессом, связанным с изменением структуры принявшей её системы. Такие изме-нения структуры имеют разную временную устойчивость и составляют основы инфомоделей и ОНГ.
НЕЖИВОЙ МИР. Процессы принятия информа-ции протекают по общим принципам саморегуляции сис-тем [ 46 ]. Эти принципы не совсем чётко и по разному сформулированы разными авторами. Наиболее известен принцип Ле Шателье для химических систем. Согласно этому принципу в химической системе веществ реакции протекают в направлении, уменьшающим воздействие внешнего фактора и сохраняющим прежнюю стабильность системы. Этот прин-цип является частным случаем пока не полностью вы-ясненного общего закона. Сформулирован принцип экономии энтропии, правильнее было бы сказать: экономии нег-энтропии ОНГ. Высказан принцип минимума потенциала рассеяния энергии. Общий единый смысл всех этих принципов таков, что в любой системе инертностью обладает не только масса и энергия, но и негэнтропия (внутренняя структура). Если у системы имеется возможность выбора между равновозможными путями, как реагировать на влияние внешних воздействий, то выбирается всегда такой процесс, который уменьшает (нейтра-лизует) отрицательное влияние внешней среды, т. е. сопровождается минимальными затра-тами энергии и ОНГ. Каждая структура обладает оп-ределённым потенциалом устойчивости. Если устойчивость хранить невозможно, то система стремится к такой пере-группировке элементов, чтобы затраты энергии и ОНГ были по возможности меньше. При наличии диссипативных структур возможно и повышение ОНГ. В таком случае система стремится к сохранению максимально возможной ОНГ.
Таким образом, внутренняя структура, определяющая ОНГ системы, является одновременно информационной мо-делью, "памятью" в системе. В материаловедении приводится много примеров, где металлы или структурно-вязкие жид-кости "помнят" действия на них в прошлом внешней среды. Многие реологические модели вязко-упругих веществ основы-ваются в допущении, что вещество "помнит" свои напряжён-ные состояния в прошлом.
Таким образом в неживой природе второй закон термо-динамики действует только в изолированной системе. Реаль-но не существует полностью изолированных систем. Следо-вательно, всегда необходимо выяснить путь и возможности дополнительной передачи ОНГ, энергии и вещества. Но даже в достаточно изолированной системе, имеется множество воз-можностей противодействовать процессам увеличения ОЭ. В мире существуют множество сил: гравитационное поле, элект-ромагнитное поле, большое и малое взаимодействие, которые ограничивают действие ОЭ. Часть их действует везде, от них невозможно изолировать ни одну систему. Кроме того, дейст-вуют целый ряд факторов, которые ограничивают или су-щественно замедляют скорость увеличения ОЭ.
1. Многие неравновесные системы кажутся стабильными (метастабильными) потому, что скорость их превращения ничтожно мала. Их времена стабильности сверхдлинные и превышают характерную длительность развития галактики (1010 лет). Метастабильным считается даже протон. Его время жизни составляет предположительно 1031 - 1033 лет. Так, что во многих термодинамических процессах увеличение ОЭ крайне ограничено из-за их медленной скорости.
2. На образование структуры системы влияет мно-жество сил в разных комбинациях и трудно предугадать их взаимодействие и результаты совместного влияния на раз-витие системы.
3. ОНГ эквивалентно хоть малой, но всё-таки реальной массе и энергии. Тем самым она должна быть подвержена тем же воздействиям, что и масса и энергия, в том числе иметь большую чувствительность к внешним воздействиям, как, на-пример, гравитационные и электромагнитные поля.
Могут возникать сомнения о целесообразности иссле-дования информационных процессов и ОНГ в неживой при-роде. Предполагают, что в неживой природе достаточно точно все явления описываются законами физики и химии. Следует, однако, повторить, что все реальные системы, в т.ч. неорга-нические, обладают бесконечной ОЭ. Физика и химия не обладают такой бесконечно большой ОНГ, необходимой для объяснения всех явлений. Они занимаются приближёнными моделями реального мира. Законы физики и химии на микро-уровне имеют вероятностный характер. Комплексы из мно-жества вероятностных процессов и неопределённостей могут быть исследованы только по законам передачи информации и негэнтропии. Внутренняя упорядоченность и ОНГ в сис-темах не придумана учёными. Они реально существуют, об-разуя механизм противодействия увеличению ОЭ. Наука до сих пор была способна объяснить только частично явления ОНГ и создать т.н. информационные модели вещества.
ЖИВЫЕ ОРГАНИЗМЫ. В живых системах дейст-вуют, кроме специфических, все те же законы, которые су-ществуют в неживом мире. Только в таких системах меха-низмы обработки информации намного сложнее. Неписанной целью организмов является борьба за существование, в общем случае борьба с энтропией. В ходе многотысячелетней борь-бы в живых организмах развиты более или менее сложные органы управления: память, органы чувств, первая и вторая сигнальная система, эмоции, нервная система, эндокринная система, механизм генетического программирования развития и др. Все эти системы правления нельзя сводить только к процессам физическим и химическим, вещественным или энергетическим. Последние являются носителями инфор-мации, но процессы обработки информации и её связывания в негэнтропию существуют в виде дополнительных систем. Для облегчения обработки информации разрабатывают инфор-мационные модели. Последние более или менее подобны реальному миру, но никогда не могут отражать его пол-ностью. Их нельзя путать с реальными системами, которым они гомоморфны. Тем не менее и эти модели существуют реально. Часто такие модели называют вторичной реаль-ностью, сознанием живых организмов, первой сигнальной системой, негэнтропией. Вторичную реальность, со своей ОНГ, можно рассматривать и как отдельный комплекс сис-тем, что у каждого организма имеет уникальный характер.
Читать дальшеИнтервал:
Закладка: