Секст Эмпирик - Сочинения в двух томах (Том 2)

Тут можно читать онлайн Секст Эмпирик - Сочинения в двух томах (Том 2) - бесплатно полную версию книги (целиком) без сокращений. Жанр: Философия. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Сочинения в двух томах (Том 2)
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    5/5. Голосов: 81
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Секст Эмпирик - Сочинения в двух томах (Том 2) краткое содержание

Сочинения в двух томах (Том 2) - описание и краткое содержание, автор Секст Эмпирик, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Сочинения в двух томах (Том 2) - читать онлайн бесплатно полную версию (весь текст целиком)

Сочинения в двух томах (Том 2) - читать книгу онлайн бесплатно, автор Секст Эмпирик
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

162

Еще нелепее рассуждают "те, кто дает такое определение: "Прямая линия есть та, которая одинаково обращается в своих собственных пределах" или такое: "...которая, обращаясь в своих собственных пределах, всеми своими частями касается плоскости". Во-первых, и эти определения подпадают под высказанные нами раньше апории. Затем, как это говорят и эпикурейцы [24], хотя прямая в пустоте есть прямая, по, однако, она здесь не вращается, потому что сама пустота не допускает движения ни цельного, ни по частям; что же касается второго определения, то оно, кроме того, впадает и во взаимодоказуемость [25]. А это дурнее всего. Именно, плоскость они определяют при помощи прямой, а прямую - при помощи плоскости, поскольку прямой является, по их мнению, та, которая касается всеми своими частями плоскости, а плоскость есть то, чего касается всеми своими частями проводимая прямая, так что для определения прямой надо сначала узнать плоскость, а чтобы узнать эту последнюю, необходимо предварительно знать прямую. Это - нелепо. И вообще тот, кто определяет прямую через плоскость, делает не что иное, как устанавливает прямую при помощи прямой же, поскольку, по их мнению, плоскость есть просто множество прямых.

[3. УГОЛ И КРУГ]

Но каково рассуждение относительно прямой, таковым же оно должно быть и относительно угла. Именно, опять-таки, когда они в целях определения утверждают, что угол есть "то наименьшее, что получается при взаимном наклонении двух прямых, не параллельных между собой" [26], то под "наименьшим" они понимают или лишенное частей тело, или то, что у них называется точкой. Однако лишенного частей тела они не могут иметь в виду, поскольку это последнее не может делиться даже па две части, в то время как угол, по их мнению, делится до бесконечности. И иначе: из углов один, по их мнению, больше, другой же - меньше. Но нет ничего меньше наименьшего тела, поскольку наименьшим является это последнее, а не [что-нибудь другое]. Следовательно, остается иметь в виду то, что они называют г точкой. А это и само относится к области апории.

163

Действительно, если точка, во всяком случае, везде является лишенной всяких промежутков, то угол не может быть подвергнут делению. Кроме того, угол не может быть больше или меньше, поскольку в том, что не обладает никаким размером, не может существовать и никакого различия по величине. И иначе: если точка попадает между прямыми, то она разделяет прямые; а то, что производит разделение, не может быть лишенным промежутков.

Но нет, некоторые из них имеют еще обыкновение называть углом "первое расстояние при наклонении [прямых]". Против них

Простое слово истины имеется [27].

А именно: указанное расстояние или не содержит в себе частей, или оно делимо. Но если оно не содержит в себе частей, то у них последуют выше высказанные апории. Если же оно делимо, то ни одно из разделенных не будет первым, поскольку, какую бы часть ни предположить первой, всегда можно найти другую, еще более первую вследствие признаваемого ими же самими деления [всего] существующего до бесконечности.

Я уж не говорю, что подобное определение углов противоречит их другому научному пониманию у геометров. Именно, производя разделение, они утверждают, что из углов один является прямым, другой - тупым, третий острым, причем среди тупых углов одни являются более тупыми, чем другие, и то же самое среди острых углов. Но если мы скажем, что углом является наименьшее расстояние при наклонении [прямых], то подобное различие углов не сохранится, поскольку они и превосходят друг друга и друг другом превосходятся. Или же, если они сохраняются, то уничтожится сам угол, поскольку он [в данном случае] не обладает устойчивой мерой, при помощи которой его можно было бы распознать.

Итак, вот что нужно сказать против них по поводу прямой линии и угла. Когда же с целью определения круга они говорят [28]: "круг есть плоская фигура, ограниченная одной линией, когда проведенные до нее от центра прямые равны между собой", - то это пустой разговор, поскольку если устранены и точка, и линия, и прямая, и также плоскость и угол, то не может быть мыслим и круг.

164

[9. ОПЕРАЦИИ С ПРЯМОЙ]

Однако чтобы не показаться какими-то софистами и не тратить все содержание возражений на одни только геометрические принципы, давайте перейдем к дальнейшему и, как мы обещали раньше [29], рассмотрим теоремы, следующие у них за принципами.

Например, говоря о разделении данной линии на две части [30], они говорят о разделении или той линии, которая дана на доске, или той, которая мыслится на основании перехода от этой. Однако они не могут говорить о разделении линии, данной на доске, поскольку эта линия является имеющей чувственную длину и ширину, а та прямая линия, о которой говорят они, есть длина без ширины, так что, не будучи, по их мнению, линией на доске, она не может быть и разделена на две части как линия. Но не может быть разделена и линия, которая мыслится по переходу от этой [линии на доске]. Действительно, пусть, например, будет дана линия, состоящая из девяти точек, причем от каждого конца будет считаться четыре и четыре точки, а одна из них будет находиться между двумя четверками [точек] [31]. Если при этих условиях целая линия делится на две [равные] части, то делящее попадает либо между этой пятой точкой и другой четверкой точек, либо на самую эту пятую точку так, что разделит ее [пополам]. Однако было бы неразумным считать, что делящее проходит между упомянутой пятой точкой и одной из четверок [точек], поскольку результаты деления оказались бы неравными и один из [отрезков] состоял бы из четырех точек, а другой из пяти. Но было бы еще гораздо неразумнее этого думать, что сама точка делится пополам, потому что [тогда] у них уже не оставалось бы точки, лишенной всякого размера, раз она делится пополам делящим.

То же самое рассуждение [получается] и тогда, когда они говорят о делении круга на равные части [32]. Действительно, если круг делится на равные части, то, поскольку он обязательно содержит посередине себя центр, который как раз является точкой, этот центр должен быть приписан к одной из половин [круга] или должен будет сам делиться пополам. Однако отнесение центра круга к той или иной из его половин делает деление пополам неравным; а если и сам он делится пополам, то это противоречит тому, что точка лишена промежутков и частей.

165

Далее, делящее линию или есть тело, или оно бестелесно. Но оно не может быть ни телом, поскольку [тело] не могло бы разделить нечто лишенное частей и бестелесное, с чем невозможно столкнуться, ни бестелесным. Ведь если это бестелесное есть опять-таки точка, то оно не может производить деления, поскольку не имеет частей и делит опять-таки не имеющее частей; если же оно есть линия, то в свою очередь, раз оно должно делить своими собственными границами, а ее границы лишены частей, оно опять не производит никакого деления.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Секст Эмпирик читать все книги автора по порядку

Секст Эмпирик - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Сочинения в двух томах (Том 2) отзывы


Отзывы читателей о книге Сочинения в двух томах (Том 2), автор: Секст Эмпирик. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x