Секст Эмпирик - Сочинения в двух томах (Том 2)
- Название:Сочинения в двух томах (Том 2)
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Секст Эмпирик - Сочинения в двух томах (Том 2) краткое содержание
Сочинения в двух томах (Том 2) - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
И иначе: та граница, которая производит деление, делит линию на две части, или попадая в середину между двумя точками, или оказываясь в середине самой точки. Однако невозможно, чтобы она оказывалась в середине точки, потому что, как мы сказали выше [33], [в данном случае] было бы необходимым, чтобы точка вообще оказывалась делимой и уже не лишенной размеров. Но еще неразумнее было бы думать, что она оказывается посередине двух точек. Во-первых, никакая граница не может падать в середине того, что непрерывно. Во-вторых, если даже допустить возможность этого, то она должна была бы раздвинуть то, посередине чего она поместилась бы, если оно действительно непрерывно. Однако оно не способно двигаться. Следовательно, и рассуждение относительно того, что производит деление, тоже ведет к апории.
Впрочем, пусть даже мы согласимся с ними в том, что отнятие производится от чувственных прямых. Все равно и в этом случае у них ничего не получится. Действительно, отнятие может происходить или от всей прямой, или от ее части; и то, что отнимается, будет отнимаемым или в качестве равного от равного, или в качестве неравного от неравного, или наоборот. Но, как мы установили в рассуждении против грамматиков [34] и против физиков [35], ничто из этого не может быть проведено беспрепятственно. Следовательно, для геометров невозможно что-нибудь отнимать от прямой или ее делить.
КНИГА IV
ПРОТИВ АРИФМЕТИКОВ
Так как из количества одно содержится в области непрерывных тел (оно, как известно, называется величиной, и им занимается главным образом геометрия), другое же содержится в области тел прерывных - это есть число, и относительно него возникает арифметика, - то, переходя от геометрических принципов и теорем к дальнейшему, мы подвергнем рассмотрению и то, что относится к числу. Ведь с устранением этого последнего не сможет возникнуть и относящаяся к нему наука.
[1. ПИФАГОРЕЙСКОЕ УЧЕНИЕ О ЕДИНИЦЕ]
Вообще ученые-пифагорейцы придают большое значение числу, поскольку в соответствии с этим последним строится природа целого. Поэтому они и восклицали всегда: "Числу же все подобно..." [1], - употребляя клятву не только числом, но и Пифагором (который объяснил его им) как богом вследствие заключающейся в арифметике силы. Они говорили:
Тем поклянемся, кто нашей душе передал четверицу,
Вечно текущей природы имущую корень неточный [2].
Четверицей у них называется число десять, которое з является суммой первых четырех чисел, потому что один да два, да три, да четыре есть десять. Это число является самым совершенным, потому что, приходя к нему, мы снова возвращаемся к единице и начинаем счет сначала. "Вечно текущей природы имущей корень неточный" они назвали ее потому, что, по их мнению, в ней залегает смысл совокупности всего, как, например, и тела, и души. В виде примера достаточно будет указать на последующее.
167
Монада, [единица], является некоторым принципом, образующим составление прочих чисел. Двоица же образует длину. В самом деле, как на геометрических принципах мы показали [3], что сначала существует некая точка, а затем, после нее, линия, которая есть длина без ширины, точно так же теперь единица обладает смыслом точки, двоица же - смыслом линии и длины: ведь ее мысленное построение включает движение от одного места к другому, а это и есть длина. Троица же соответствует ширине и поверхности, потому что здесь мысль движется от одной точки к другой, а затем еще раз так же - в другом направлении, и с присоединением измерения в ширину к измерению в длину возникает понятие поверхности. Но если мысленно прибавить к троице четвертую единицу, т.е. четвертую точку, то возникает пирамида, твердое тело и фигура, потому что она обладает длиной, шириной и глубиной. Поэтому в числе "четыре" обнимается смысл тела.
Но также и души, потому что, говорят они, подобно тому как гармонией управляется весь мир, точно так же одушевляется и живое существо.
Далее, как известно, совершенная гармония получает свое существование в трех созвучиях [4]: в кварте, квинте и октаве. Созвучие кварты выражается отношением четырех к трем, созвучие квинты - отношением полуторным и созвучие октавы - двойным. Числом "четыре трети" называется число, состоящее из некоего целого числа и его третьей части, в каковом отношении находится восемь к шести (потому что оно содержит само шесть и его третью часть, т.е. двойку). Полуторным [число] называется тогда, когда оно охватывает одно число и его половину, в каковом отношении находится девять к шести (потому что оно состоит из шести и из его половины, т.е. из трех). Наконец, двойным называется такое, которое равно двум числам, в каковом отношении четыре находится к двум (потому что оно одно и то же число заключает дважды).
Однако если это так и, согласно первоначальному предположению, имеется четыре числа (один, два, три и четыре), в которых, как мы сказали, гармонически охватывается также и идея души, то четыре в отношении двух и два в отношении единицы являются двойными, в чем и содержится созвучие октавы; три же является полуторным в отношении двух (поскольку оно обнимает два и половину этого, откуда оно полагает основание для созвучия квинты), четыре же составляет четыре трети в отношении трех, откуда в нем содержится созвучие кварты. Следовательно, не без основания сказано у пифагорейцев, что число "четыре" есть то, что обладает "вечно текущей природы... корнем неточным".
168
Из этого изложения при помощи примеров становится ясным, что они придавали числам огромное значение. Действительно, у них имеются многочисленные рассуждения о числах. Однако мы не будем сейчас распространяться об этом и примемся за возражения, положивши начало нашим рассуждениям в единице, которая является началом всякого числа и с устранением которой перестает существовать и [само] число.
[2. КРИТИКА ПИФАГОРЕЙСКОГО УЧЕНИЯ О ЕДИНИЦЕ]
Итак, рисуя нам понятие единого, Платон говорит в пифагорейском духе [5]: "Единое есть то, без чего ничто не называется единым", или "то, по причастности к чему каждая вещь называется единым и многим". Действительно, растение, например, живое существо и камень называются едиными, но они не есть единое в собственном смысле слова, а [только] мыслятся по причастности к единому, в то время как это последнее не является ничем из них. Ведь ни растение, ни животное, ни камень, ни что-нибудь из исчисляемого не есть подлинно единое, потому что если бы единое было единым растением или животным, то не являющееся растением или животным ни в коем случае не называлось бы единым. Однако и растение, и животное, и бесчисленное множество других предметов зовется единым. Следовательно, единое не относится к исчисляемым [предметам]. То же, участвуя в чем каждая вещь как единая становится единичным [предметом] самим по себе, а как многое множеством, становится единым и многим, [которые относятся к области] единичных вещей. Подобное множество, в свою очередь, не принадлежит к [самим] множественным [предметам], как, например, к растениям, животным и камням, поскольку эти последние называются многими по причастности к нему, само же оно в них не содержится.
Читать дальшеИнтервал:
Закладка: