В. Купцов - Философия и методология науки

Тут можно читать онлайн В. Купцов - Философия и методология науки - бесплатно полную версию книги (целиком) без сокращений. Жанр: Философия, издательство АСПЕКТ ПРЕСС, год 1996. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Философия и методология науки
  • Автор:
  • Жанр:
  • Издательство:
    АСПЕКТ ПРЕСС
  • Год:
    1996
  • Город:
    Москва
  • ISBN:
    5-7567-0062-5
  • Рейтинг:
    3.64/5. Голосов: 111
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

В. Купцов - Философия и методология науки краткое содержание

Философия и методология науки - описание и краткое содержание, автор В. Купцов, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Книга представляет собой пособие по общему курсу «Философия и методология науки», изучение которого предусмотрено для подготовки магистров и аспирантов всех специальностей. Оно охватывает основной комплекс проблем этой дисциплины, отражает современное состояние исследований в данной области. Ясный и образный язык работы, ее четкая структура, а также оригинальная методическая обработка делают эту книгу интересной и доступной широкому кругу читателей.

Философия и методология науки - читать онлайн бесплатно полную версию (весь текст целиком)

Философия и методология науки - читать книгу онлайн бесплатно, автор В. Купцов
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Н. Коперник увидел, что два фундаментальных мировоззренческих принципа его времени — принцип движения небесных тел по кругам и принцип простоты природы явно не реализуются в астрономии.

Решение этой фундаментальной проблемы и привело его к великому открытию.

4. ГЕОМЕТРИЯ ЛОБАЧЕВСКОГО

Перейдем к анализу другого открытия — открытия неевклидовой геометрии. Попытаемся показать, что и здесь речь шла о фундаментальной проблеме. Рассматривая этот пример, мы выясним ряд других важных моментов истолкования фундаментальных открытий.

Создание неевклидовой геометрии обычно представляется в виде решения известной проблемы пятого постулата геометрии Евклида.

Эта проблема заключалась в следующем.

Основу всей геометрии, как это следовало из системы Евклида, представляли пять следующих постулатов:

1) через две точки можно провести прямую, и притом только одну;

2) любой отрезок может быть продолжен в любые стороны до бесконечности;

3) из любой точки как из центра можно провести окружность любого радиуса;

4) все прямые углы равны;

5) две прямые, пересеченные третьей, пересекутся с той стороны, где сумма внутренних односторонних углов меньше 2d.

Уже во времена Евклида стало ясно, что пятый постулат слишком сложен по сравнению с другими исходными положениями его геометрии. Другие положения казались очевидными. Именно из-за их очевидности они рассматривались как постулаты, т.е. как то, что принимается без доказательств.

Вместе с тем еще Фалес доказал равенство углов при основании равнобедренного треугольника, т.е. положение, значительно более простое, чем пятый постулат. Отсюда ясно то, почему к этому постулату всегда относились с подозрением и пытались представить его теоремой. И у самого Евклида геометрия строилась так, что сначала доказывались те положения, которые не опираются на пятый постулат, а потом уже этот постулат использовался для развертывания содержания геометрии.

Интересно то, что пятый постулат геометрии Евклида стремились доказать как теорему, сохраняя при этом убежденность в его истинности, буквально все крупные математики, вплоть до Н.И. Лобачевского, Ф. Гаусса и Я. Больяи, которые в конце концов и решили проблему. Их решение складывается из следующих моментов:

— пятый постулат геометрии Евклида действительно является постулатом, а не теоремой;

— можно построить новую геометрию, принимая все евклидовы постулаты, кроме пятого, который заменяется его отрицанием, т.е. например, утверждением, что через точку, лежащую вне прямой, можно провести бесконечное число прямых, параллельных данной;

В результате такой замены и была построена неевклидова геометрия.

Поставим теперь следующие вопросы.

— Можно ли считать, что только стремление доказать пятый постулат привело к созданию неевклидовых геометрий?

— Почему в течение двух тысячелетий ни у кого не возникало даже мысли о возможности построения неевклидовой геометрии?

Чтобы ответить на эти вопросы, обратимся к истории науки.

До Н. И. Лобачевского, Ф. Гаусса, Я. Больяи на евклидову геометрию смотрели как на идеал научного знания.

Этому идеалу поклонялись буквально все мыслители прошлого, считавшие, что геометрическое знание в изложении Евклида является совершенным. Оно представлялось образцом организации и доказательности знания.

У И.Канта, например, идея единственности геометрии была органической частью его философской системы. Он считал, что евклидово восприятие действительности является априорным. Оно есть свойство нашего сознания, и потому мы не можем воспринимать действительность иначе.

Вопрос о единственности геометрии был не просто математическим вопросом.

Он носил мировоззренческий характер, был включен в культуру.

Именно по геометрии судили о возможностях математики, об особенностях ее объектов, о стиле мышления математиков и даже о возможностях человека иметь точное, доказательное знание вообще.

Откуда же тогда возникла сама идея возможности различных геометрий?

Почему Н.И.Лобачевский и другие ученые смогли прийти к решению проблемы пятого постулата?

Обратим внимание на то обстоятельство, что время создания неевклидовых геометрий было кризисным с точки зрения решения проблемы пятого постулата Евклида. Хотя математики занимались этой проблемой в течение двух тысячелетий, у них при этом не возникало никаких стрессовых ситуаций по поводу того, что она так долго не решается. Они думали, видимо, так:

— геометрия Евклида — это великолепно построенное здание;

— правда, в ней имеется некоторая неясность, связанная с пятым постулатом, однако в конце концов, она будет устранена.

Проходили, однако, десятки, сотни, тысячи лет, а неясность не устранялась, но это никого особенно не волновало. По-видимому, логика здесь могла быть такая: в конце концов, истина одна, а ложных путей сколько угодно. Пока не удается найти правильное решение проблемы, но оно, несомненно, будет найдено. Утверждение, содержащееся в пятом постулате будет доказано и станет одной из теорем геометрии.

Но что же случилось в начале XIX в.?

Отношение к проблеме доказательства пятого постулата существенно меняется. Мы видим целый ряд прямых заявлений по поводу весьма неблагополучного положения в математике в связи с тем, что никак не удается доказать столь злополучный постулат.

Наиболее интересным и ярким свидетельством этого является письмо Ф.Больяи его сыну Я.Больяи, который стал одним из создателей неевклидовой геометрии.

«Молю тебя, — писал отец, — не делай только и ты попыток одолеть теорию параллельных линий; ты затратишь на это все время, а предложения этого вы не докажете все вместе. Не пытайся одолеть теорию параллельных линий ни тем способом, который ты сообщаешь мне, ни каким-либо другим. Я изучил все пути до конца; я не встретил ни одной идеи, которой бы я не разрабатывал. Я прошел весь беспросветный мрак этой ночи, и всякий светоч, всякую радость жизни я в ней похоронил. Ради бога, молю тебя, оставь эту материю, страшись ее не меньше, нежели чувственных увлечений, потому что и она может лишить тебя всего твоего времени, здоровья, покоя, всего счастья твоей жизни. Этот беспросветный мрак может потопить тысячи ньютоновских башен. Он никогда не прояснится на земле, и никогда несчастный род человеческий не будет владеть чем-либо совершенным даже в геометрии».

Почему такая реакция возникает только в начале XIX в.?

Прежде всего потому, что в это время проблема пятого постулата перестала быть частной, которую можно и не решать. В глазах Ф.Больяи она предстала как целый веер фундаментальных вопросов.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


В. Купцов читать все книги автора по порядку

В. Купцов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Философия и методология науки отзывы


Отзывы читателей о книге Философия и методология науки, автор: В. Купцов. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x