Вернер Гейзенбер - Шаги за горизонт

Тут можно читать онлайн Вернер Гейзенбер - Шаги за горизонт - бесплатно полную версию книги (целиком) без сокращений. Жанр: Философия, издательство Прогресс, год 1987. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Вернер Гейзенбер - Шаги за горизонт краткое содержание

Шаги за горизонт - описание и краткое содержание, автор Вернер Гейзенбер, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

В. Гейзенберг — один из пионеров современной теоретической физики, который закладывал основы атомной физики. С не меньшей смелостью и глубиной ставил и решал он связанные с нею философские, логические и гуманитарные проблемы.

Сборник составлен на основе двух книг В. Гейзенберга: «Шаги за горизонт» (1973) и «Традиция в науке» (1977). В нем дается теоретико-познавательное, гносеологическое осмысление новейших научных достижений, путей развития теоретической физики.

Издание рассчитано как на философов, так и на широкий круг ученых-естествоиспытателей.

Шаги за горизонт - читать онлайн бесплатно полную версию (весь текст целиком)

Шаги за горизонт - читать книгу онлайн бесплатно, автор Вернер Гейзенбер
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Моя первая дискуссия с Нильсом Бором, ровно 50 лет назад, вращалась вокруг этой трудности. Бор прочел в Геттингене лекцию, в которой заявил, что в постоянном электромагнитном поле можно вычислить энергию стационарных состояний в согласии с квантовыми условиями и что проведенное незадолго до того Крамерсом вычисление квадратичного эффекта Штарка содержит, по-видимому, правильные результаты, поскольку в других случаях тот же метод отлично зарекомендовал себя. С другой стороны, между постоянным электрическим полем и медленно изменяющимся электрическим полем различие очень мало.

При не слишком медленном изменении электрического ноля, например, с частотой, приближающейся к частоте орбитального вращения, мы увидели бы, что резонанс наступает, разумеется, не тогда, когда частота внешнего электрического поля совпадает с частотой вращения, а тогда, когда она совпадает с частотой, задаваемой переходами электрона с одной орбиты на другую и наблюдаемой в спектре.

В ходе подробного разбора этой проблемы Бор попробовал объяснить дело так, что в момент временного изменения электрического поля начинают действовать силы излучения и что, вероятно, поэтому невозможно вычислить результат, пользуясь методами классической физики. Но, разумеется, он сразу осознал немалую искусственность апелляции в данном пункте к силам излучения. Мы поэтому вскоре склонились к тому мнению, что какая-то ошибка скрывается в самой механической модели дискретных стационарных состояний. Все решила одна работа, еще не упоминавшаяся мною. Это была работа Паули об ионе водорода Н 2 +. Паули считал, что правила квантования Бора — Зоммерфельда можно применять, имея дело с хорошо определенной моделью периодических орбит, как у водорода, но никак не с моделью такой сложности, как, скажем, у атома гелия, где вокруг ядра вращаются два электрона; ибо тогда мы потонем в чудовищных математических трудностях и осложнениях задачи трех тел. С одной стороны, если бы мы имели два фиксированных центра, а именно два ядра водорода и один электрон, то движение электрона оставалось бы однозначно-периодическим движением и поддавалось расчету. В остальном эта модель уже достаточно сложна; ее можно использовать поэтому для проверки приложимости старых правил к подобному промежуточному случаю. Работая с этой моделью, Паули установил, что расчеты действительно не приводят к истинной величине энергии для Н 2 +. В результате возникли сомнения в применимости классической механики для вычисления дискретных стационарных состояний, и внимание все прочнее приковывалось к переходам между ними. Стало ясно, что для полного объяснения явлений недостаточно только вычислить энергию, нужно было вычислить вероятности переходов. Из работы Эйнштейна 1918 года мы знали, что вероятности переходов определены как величины, зависящие от двух состояний, начального и конечного. В своем принципе соответствия Бор установил, что эти вероятности переходов: можно оценить интенсивностями высших гармонических составляющих в Фурье-разложении электронной орбиты. Его идея сводилась к тому, что каждая линия соответствует одной Фурье-компоненте в разложении движения электрона; из квадрата этой амплитуды можно вычислить интенсивность. Эта интенсивность, естественно, не стоит ни в какой непосредственной связи с эйнштейновской вероятностью перехода, но определенное соотношение между ними все же существует, так что интенсивность позволяет приблизительно вычислить эйнштейновские величины. Итак, внимание все более смещалось с энергии стационарных состояний к вероятности перехода из одного стационарного состояния в другое, и Крамере первым начал серьезно исследовать дисперсию атома, связывая поведение модели Бора под воздействием излучения с эйнштейновскими коэффициентами.

Составляя дисперсионную формулу, Крамере руководствовался той идеей, что составляющим Фурье-разложения соответствуют виртуальные гармонические осцилляторы в атоме. Потом Крамере обсудил со мной те явления рассеивания, при которых частота рассеиваемого света отличается от частоты падающего света. Квант рассеиваемого света здесь отличается от кванта падающего света потому, что в момент рассеяния атом переходит из одного состояния в другое. Подобные явления были только что открыты в линейчатых спектрах Раманом. При попытке сформулировать выражение для дисперсии в этих случаях приходилось говорить не только об Эйнштейновых вероятностях перехода, но еще и об амплитудах перехода; нужно было приписать этим амплитудам определенные фазы, помножить между собою две амплитуды — скажем, амплитуду, ведущую от состояния m к состоянию n , на амплитуду, ведущую от состояния n к состоянию k , — а потом суммировать n -ное число промежуточных состояний; только таким путем мы пришли к осмысленным формулам для дисперсии.

Вы видите, таким образом, что сосредоточение внимания не на энергии стационарных состояний, а на вероятности перехода и дисперсии в конце концов привело к новому способу рассмотрения; фактически только что упомянутые мною суммы произведений, приведенные Крамерсом и мною в нашей работе по дисперсии, были уже почти готовыми матричными произведениями. Отсюда требовался уже лишь очень маленький шаг, чтобы сказать: давайте-ка отбросим всю эту идею электронных орбит и просто заменим Фурье-компоненты электронных орбит соответствующими матричными элементами. Должен сознаться, что я тогда не знал, что такое матрица, и не знал правил матричного умножения. Но подобные операции оказалось возможным усвоить из физики, а позднее выяснилось, что речь идет о хорошо известном у математиков методе.

Как видите, представление об электронной орбите, связанное с идеей дискретного стационарного состояния, было по ходу дела практически отброшено. Понятие дискретных стационарных состояний, однако, осталось жить. Понятие это было необходимым. Оно имело свою основу в данных наблюдений. Наоборот, электронную орбиту не удалось согласовать с наблюдениями, поэтому от нее отказались, и от нее остались только матрицы для координат.

Следовало бы, пожалуй, упомянуть о том, что еще до 1925 года, когда это произошло, Борн в своем геттингенском семинаре 1924 года подчеркнул, что неправильно списывать трудности квантовой теории только на счет взаимодействия между излучением и механической системой. Он стоял за то, чтобы пересмотреть механику и заменить ее своеобразной квантовой механикой, создав тем самым базу для понимания атомных явлений. А потом было сформулировано матричное умножение. Борн и Йордан, как и независимо от них Дирак, открыли, что те дополнительные условия, которые в моей первой работе были присоединены к матричному умножению, могут быть записаны в форме изящного уравнения.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Вернер Гейзенбер читать все книги автора по порядку

Вернер Гейзенбер - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Шаги за горизонт отзывы


Отзывы читателей о книге Шаги за горизонт, автор: Вернер Гейзенбер. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x