Феликс Филатов - КЛЕЙМО СОЗДАТЕЛЯ. Гипотеза происхождения жизни на Земле.
- Название:КЛЕЙМО СОЗДАТЕЛЯ. Гипотеза происхождения жизни на Земле.
- Автор:
- Жанр:
- Издательство:ОАО ордена Знак почета Смоленская областная типография им. В.И.Смирнова
- Год:2011
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Феликс Филатов - КЛЕЙМО СОЗДАТЕЛЯ. Гипотеза происхождения жизни на Земле. краткое содержание
КЛЕЙМО СОЗДАТЕЛЯ. Гипотеза происхождения жизни на Земле. - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Каждая из двадцати аминоацил-тРНКсинтетаз должна всегда прикреплять ктРНК только свою аминокислоту, узнавая только одну из 20-типротеиногенных аминокислот, и не связывая другие похожие молекулы, содержащихся в цитоплазме клетки. Аминокислоты значительно меньшетРНК по размерам, неизмеримо проще по структуре, поэтому их узнавание является значительно большей проблемой, чем узнавание нужной тРНК. В действительности, ошибки имеют место, но их уровень не превышает одной на 10,000 — 100,000 синтезированных аминоацил-тРНК. Некоторые аминокислоты отличаются друг от друга очень слабо, например, лишь одной метильной группой ( I и V , A и G ). Для таких случаев во многих аминоацил-тРНКсинтетазах эволюционировали механизмы, избирательно расщепляющие ошибочно синтезированные продукты. Процесс их распознавания и гидролиза называют редактированием...
Все аминоацил-тРНКсинтетазы произошли от двух предковых форм, и объединены на основе структурного сходства в два класса. Эти классы отличаются по доменной организации, структуре главного (амино-ацилирующего)домена, способу связывания и аминоацилированиятРНК. Аминоацилирующий домен аминоацил-тРНКсинтетаз 1-гокласса образован так называемой укладкой Россмана, в основе которой лежит параллельный β-лист. Ферменты 1-гокласса являются в большинстве случаев мономерами. 76-йаденозин тРНК они аминоацилируют по 2’-ОН группе. Ферменты 2-гокласса имеют в основе структуры аминоацилирующего домена антипараллельный β-лист. Как правило, они являются димерами, то есть имеют четвертичную структуру. За исключением фенилаланил-тРНКсинтетазы все они аминоацилируют 76-йаденозин тРНК по 3’-ОН группе. Каждый класс дополнительно делится на 3 подкласса — a,b и c по структурному сходству...
Глобула аминоацил-тРНКсинтетазы состоит из двух основных доменов — аминоацилирующего, в котором располагается активный центр и происходят реакции, и антикодон-связывающего, узнающего последовательность антикодонатРНК ...«
Этот довольно пространный отрывок дает только самое общее впечатление о сложности структуры и функции АРСаз. Помимо основных описанных функций, они выполняют в клетке и другие, называемые неканоническими ; мы касаться их не будем.
И все же функция упомянутого выше антикодон-связывающего домена не является абсолютным условием аминоацилированиятРНК . Нина Энтелис в связи с этим отмечает, что « для аланиновойАРСазы, например, основным элементом узнавания служит неканоническая пара G-U в аминоакцепторном стебле. При замене этой пары на G-C, A-U и даже на U-G аланиноваятРНК теряет способность аминоацилироватьсяаланином. Если же в любой другой тРНК заменить третью пару аминоакцепторного стебля на G-U, то эта тРНК приобретает сродство к аланиновойАРСазе и способность присоединять аланин. Таким образом, для распознавания своей тРНКаланиновойАРСазе(и она не исключение) достаточно небольшого участка аминоакцепторного стебля ». У сериновой и лейциновойАРСаз E. coli антикодон также не участвует во взаимной рекогниции. Это, в частности, значит, что изменение антикодона в таких случаях — а иногда и в других, когда даже весь антикодон участвует в узнавании своей АРСазой, — не сможет повлиять на исходную специфичность аминокислоты — разве что сделает ее несколько менее эффективной.
Стоит еще раз упомянуть две особенности АРСаз. Во-первых, это очень различные в структурном отношении белковые молекулы, преимущественно классифицированные только по узнаваемому субстрату. Во-вторых, они обладают столь высокой специфичностью, что для ее характеристики даже используется особый термин — сверхспецифичность . Это свойство, отмечает Ольга Лаврик, тем более уникально, что « задачу специфичности АРСазы решают дважды: на стадии активации аминокислоты и на стадии взаимодействия с тРНК ». И это при скорости роста полипептидной цепи в 20 аминокислот в секунду (для прокариот; у эукариот эта скорость на порядок меньше).
А теперь — имея в виду все, о чем мы только что рассказали, — отметим следующие два обстоятельства:
— тРНК транскрибируются на геномной матрице, где естественно — как и всякие гены — подвергаются мутациям, которые приводят к точечным и другим изменениям в транскриптах (в том числе — и в антикодонах);
— любая мутация по основаниям антикодона или по другим основаниям тРНК, участвующим в рекогницииАРСазами, которая может привести к изменению соответствия кодон-аминокислота, то есть к изменению кодировки немедленно исключит мутант из процесса декодирования;
и зададимся такими вопросами: если генетический код столь феноменально консервативен, что оказался способным практически не измениться за три с половиной миллиарда лет (о чем свидетельствует его универсальность), то:
— как быстро он сформировался?
— почему он стал именно таким?
— какие варианты могли ему предшествовать?
Ответ на первый вопрос несложен: быстро . Очень быстро — в масштабах времени, прошедших с той поры, как он сформировался. Второй вопрос вызывает встречный: Каким " таким "? Ответ на него остается загадкой, ей посвящена оставшаяся часть книги, из которой Читатель, возможно, вынесет представление о неслучайности существующей версии. Третий вопрос возвращает нас к гипотезе Георгия Гамова, с которой фактически началась эра ДНК , то есть, молекулярная биология, и с которой мы начнем ответ на упомянутый встречный вопрос в следующей главе.
.....................
Число 11 , вынесенное в заголовок этой главы, хотя и менее выразительное, нежели число 111 , в определенном контексте также могло бы служить информационным символом . В конце концов, параллель между тремя единицами числа 111 и триплетностью генетического кода упирается в определенное ограничение последней, поскольку генетический код триплетен лишь по размеру кодона. Функциональную же нагрузку несут в кодоне, по преимуществу, только две первые буквы, а третья служит простым разграничителем в восьми случаях из двадцати или одним из двух вариантов такого разграничителя — еще в десяти. И только два кодона являются истинно триплетными — TGG ( W), и ATG ( М). Еще один триплет универсального кода со всеми тремя значащими буквами — TGA — является пунктуационным кодоном.
Номер этой главы — единственный в этой книжке — совпадает со своей позицией, помеченной (гораздо менее выразительным) римским числом.
Глава 496. Почему кодируемых аминокислот двадцать? (XII)
Интервал:
Закладка: