Александр Богданов - Тектология (всеобщая организационная наука). Книга 2
- Название:Тектология (всеобщая организационная наука). Книга 2
- Автор:
- Жанр:
- Издательство:Издательство «Экономика», 1989
- Год:1989
- Город:МОСКВА
- ISBN:5—282—00537—9
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Александр Богданов - Тектология (всеобщая организационная наука). Книга 2 краткое содержание
Во второй половине XX в. интерес к идеям «Тектологии» (1913—1928) возрос в связи с развитием кибернетики. Работа интересна тем, что ряд положений и понятий, разработанных в рамках тектологии («цепная связь», «принцип минимума» и др.), применим и для построения кибернетических моделей экономических процессов и решения планово-экономических задач. Переиздание книги рассчитано на подготовленного читателя, знакомого с оценкой В. И. Ленина «Краткого курса экономической науки» (1897 г.) и критикой идеалистической системы «эмпириомонизма», данной в работе «Материализм и эмпириокритицизм» (1908 г.).
Для научных работников.
Тектология (всеобщая организационная наука). Книга 2 - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Остановимся еще на столь обычной формуле «линия наименьшего сопротивления» или на выражающем ту же мысль «законе наименьшего действия» (слово «действие» тут означает работу, преодолевающую сопротивления). Схема эта, между прочим, показывает, насколько могут быть ошибочны самые привычные, самые укоренившиеся представления. Нам всегда кажется непосредственно понятным и очевидно необходимым, что тело, получившее толчок, должно двигаться по направлению этого толчка; такой случай представляется нам абсолютно простым. Между тем если бы это было так просто и так логически необходимо, то явления происходили бы совершенно иначе, чем на самом деле: раз на линии толчка оказалось бы превосходящее его сопротивление, например наклонная твердая поверхность, то движение просто останавливалось бы, а не изменяло бы своего направления; если бы толчок необходимо придавал телу свое собственное направление, то было бы невозможно, чтобы он придавал ему иное. Опыт показывает, напротив, что в каждом толчке или воздействии заключена возможность всех направлений: и тело «выбирает» свой путь согласно закону наименьшего действия потому, что ему есть из чего выбирать. Первоначальное действие толчка следует принять в виде неправильной вибрации элементов тела; в этой вибрации есть бесконечно малые зародыши самых различных движений, которые становятся объектом подбора: из числа таких элементарных перемещений удерживаются те, для которых сопротивление оказывается относительно наименьшим; они и образуют реальный путь тела.
Иначе и нельзя представить дело, раз отвергнуто старое понятие о частицах тела как твердых, инертных точках-субстанциях, неподвижно связанных между собой. Мы знаем, что твердое тело есть сложнейший комплекс молекулярных колебательных движений, весьма быстрых и в обычном состоянии тела ограниченных взаимными сопротивлениями частиц. Внешний толчок, непосредственно действуя на некоторые из частиц, изменяет их движения; эти изменения с разной силой передаются другим частицам как нарушения прежнего хода их колебаний, от других — третьим и т. д.: волна сложного воздействия в системе бесчисленных и разнообразных частичных движений — самый типичный материал для подбора.
Сущность подбора здесь такова. Все молекулы «ударяющего» тела А имеют в среднем по сравнению с молекулами тела В дополнительную скорость v, которую мы и воспринимаем как скорость тела А; молекулы же тела В имеют по отношению к первым отрицательную дополнительную скорость — и. В столкновениях тех и других при ударе соответственно в большей мере будут парализоваться противоположными движениями молекул другой стороны для тела В те движения, которые направлены против скорости и, а для тела А те, которые направлены по ней. В результате у В будет получаться некоторая дополнительная скорость по линии у, у А же уменьшение этой скорости;
это и будет ее наблюдаемое перераспределение между телами, различное, смотря по условиям: строению тел, количеству и массе их молекул.
В механике есть еще ряд законов «сохранения» тех или иных величин и соотношений, например, сохранения центра тяжести, сохранения поверхностей. Все они могут быть сведены к схемам максимум и минимум, специально же к закону наименьшего действия. Но есть один закон «сохранения», господствующий не только над механикой, но и над физикой вообще, и над всеми естественными науками, — принцип сохранения энергии. Он гораздо глубже и шире других, так что отнюдь не может быть всецело сведен к схеме подбора; он, по-видимому, есть современная форма, в которой выражается непрерывность существований всяких активностей-сопротивлений, непрерывность их закономерного действия, другими словами, современная форма причинности. Однако в нем есть одна сторона — именно та, которая казалась до сих пор наиболее загадочной, — получающая иной вид, чем прежде, если мы попытаемся осветить ее принципом подбора. Это — ограничительный закон энтропии , согласно которому превращения энергии вполне обратимы, потому что при всех них количество тепловой энергии возрастает за счет иных ее форм.
Пусть какое‑нибудь твердое тело получает толчок в определенном направлении от другого тела. Из числа возникающих, первоначально разнообразных движений элементов системы огромное большинство устраняется подбором, а именно подавляется внешними и внутренними для данной системы сопротивлениями. Но какова дальнейшая судьба этих устраненных подбором движений? Они не переходят прямо в перемещение тела, но также, конечно, не просто «уничтожаются». Их судьба зависит от строения самой системы.
Тела упругие организованы таким образом, что при деформации немедленно вновь восстанавливают свою форму, т. е. их частицы проходят обратно путь деформирующего перемещения. Следовательно, те движения, которые не становятся составной частью траектории всего тела, отражаются превосходящими их сопротивлениями по строго обратному пути и возвращаются к своему исходному пункту, к точке удара. Идя навстречу действию толчка, они его усиливают собой, так как увеличивают разницу скоростей между сталкивающимися частицами обоих тел. Они, значит, не теряются для механического действия толчка, его кинетическая энергия, только что уменьшенная на их величину, вновь на нее возрастает.
В телах неупругих возникающая деформация остается, взаимные соотношения частиц оказываются изменены, и потому их отброшенные, но вошедшие в траекторию движения не возвращаются к пункту толчка по прежним путям, а беспорядочно рассеиваются в массе тела как молекулярные вибрации. Но это по современным воззрениям и есть тепловая форма энергии. Перед нами энтропический процесс: часть «живой силы» толчка теряется.
При абсолютно упругих телах такой потери не было бы, и передача движения от одного из них другому произошла бы без возрастания энтропии. Но абсолютно упругих тел не бывает, и потому всякая подобная передача движения, представляющая один из простейших случаев превращений энергии, сопровождается энтропической растратой, ничтожной для тел весьма упругих, гораздо более значительной — для малоупругих.
Здесь, таким образом, энтропический процесс неизбежен как результат подбора возникающих движений: при подборе во всех его формах и на всех ступенях происходит расточение энергии, переход к ее ниже организованным видам, и энтропия — частный случай такого расточения. Она есть как бы цена подбора, который совершается при переходе энергии от одной системы к другой.
Насколько значительна эта цена, это расточение энергии? Все зависит, очевидно, от того, как протекает процесс подбора. Исследуем, например, случай толчка, получаемого неупругим телом. Для этого, пользуясь обычным аналитическим приемом, мысленно разделим процесс толчка на стадии минимальной или «бесконечно малой» продолжительности и будем их рассматривать одну за другой. Мы найдем, что соответственные им моменты подбора протекают неодинаково. В первом моменте подбора, соответствующем самой начальной фазе толчка, энтропическая растрата должна оказаться наибольшей; среди различнейших минимальных перемещений первого момента удерживается лишь то, которое направлено по линии наименьшего сопротивления, т. е. растрачивается почти вся отданная в этой фазе толчка кинетическая энергия. Но в следующий момент картина несколько иная: так как уже началось поступательное движение тела, то продолжающееся действие толчка встречает со стороны всей его молекулярной структуры соответственно меньшее сопротивление; поэтому беспорядочно-разнообразное колебание, зависящее от второй фазы толчка, в такой же мере слабее; между тем перемещение по траектории, которое удерживается подбором, тут двойное — продолжение первого, предыдущего, перемещения плюс новое. Следовательно, энтропическая потеря относительно уменьшается. В следующий момент она по таким же причинам уменьшается еще более и т. д., до самого окончания толчка. В последний момент действия толчка новая возникающая потеря бесконечно мала, т. е. передача энергии за этот момент происходит без энтропии.
Читать дальшеИнтервал:
Закладка: