Жан Брикмон - Интеллектуальные уловки. Критика современной философии постмодерна
- Название:Интеллектуальные уловки. Критика современной философии постмодерна
- Автор:
- Жанр:
- Издательство:Дом интеллектуальной книги
- Год:2002
- Город:Москва
- ISBN:5-7333-0200-3
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Жан Брикмон - Интеллектуальные уловки. Критика современной философии постмодерна краткое содержание
Книга родилась из популярного сейчас розыгрыша, в котором один из нас опубликовал в американском культурологическом журнале Социальный Текст пародийную статью, напичканную бессмысленными, но, к сожалению, достоверными цитатами о физике и математике известных французских и американских интеллектуалов…
…чего именно мы хотим добиться? Не так много, но и не так мало. Мы показываем, что такие известные интеллектуалы, как Лакан, Кристева, Иригарэй, Бодрийар и Делез, неоднократно злоупотребляли научными концепциями и терминологией: или используя научные идеи полностью вне контекста, никак не обосновывая — отметим, что мы не против перенесения концепций из одной области в другую, а возражаем лишь против таких необоснованных переносов — или же кичась научным жаргоном перед своими читателями, которые не являются учеными, не обращая никакого внимания на его адекватность и даже значение. Мы не считаем, что это умаляет значение остальной части их работы, судить о которой мы не беремся.
http://fb2.traumlibrary.net
Интеллектуальные уловки. Критика современной философии постмодерна - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
На наш взгляд, Хомский преувеличивает. Следует всегда помнить, что он говорит о тех направлениях политических наук, которые тесно связаны с властью и ее мистификациями.
(11) Эрибон (1994), с. 70.
(12) Мы вернемся к теме культуры и политики в эпилоге.
2. Жак Лакан *
(13) Или, в более общем виде, математических объектов, называемых «многообразиями».
(14) Классическая шутка: тополог не умеет отличать кольцо от чашки, по скольку и то, и другое является твердым объектом с одним отверстием, через которое можно просунуть палец.
(15) Ленту Мебиуса можно построить из прямоугольной ленты бумаги, один из узких концов которой разворачивается на 180 градусов, а затем приклеивается к другому концу. Таким образом, получается поверхность с одной стороной, по которой можно пройти, не переходя на другую сторону, и на которой нельзя различить ни верха, ни низа.
(16) Бутылка Кляйна немного напоминает ленту Мебиуса, но у нее нет границ; она может быть представлена лишь в геометрическом пространстве с большим количеством измерений (которых должно быть не меньше четырех). Cross-cap поверхность (называемая Лаканом cross-cut) — это другой тип поверхности.
(17) Цитируется по Рустанг (1986, с. 91), ссылка на «прошлогоднее выступление» относится к работе Лакана 1973 года. Мы прочитали эту статью с целью найти в ней обещанную «точную эквивалентность топологии и структуры» (если только допускать, что она вообще имеет хоть какой-то смысл). Эта статься содержит многословные размышления (явно фантастического характера), в которых перемешаны топология, логика, психоанализ, греческая философия и вообще все, что только можно вообразить — отрывок из них мы процитируем ниже на с. 38–40 — но по поводу предполагаемой эквивалентности топологии и «структуры» там можно найти лишь следующий текст:
Топология «сделана не для того, чтобы вести нас в структуру». Она сама является этой структурой — в качестве обращения порядка цепи, из которой состоит наш язык.
Структура — это асферическое, скрытое в языковой артикуляцией, когда ею завладевает эффект субъекта.
Ясно, что это «завладевает» как часть фразы, как псевдомодальный глагол, повторяется в отношении самого объекта, который покрывается им как глаголом в его грамматическом субъекте, так что образуется ложный эффект смысла, отголосок воображаемого, введенного топологией, в зависимости от того, что либо эффект субъекта создает завихрение асферического, либо субъективное этого эффекта от него «отражается». Здесь нужно различать двусмысленность, записывающуюся о значении или же о завитке среза, и намек на дыру, то есть на структуру, которая задает смысл этой двусмысленности. (Лакан 1973, с. 40)
Если отложить в сторону мистификации Лакана, то окажется, что отношение между топологией и структурой легко понять, но это отношение зависит от того, что понимать под «структурой». Если понимать ее широко — как, например, лингвистическую структуру, социальную и т. д. — тогда это понятие, очевидно, никак не может быть сведено к чисто математическому понятию «топологии». Если же, напротив, понимать «структуру» в ее строго математическом смысле, мы легко заметим, что топология задает особый тип структуры, причем существуют и другие типы: структура порядка, структура группы, структура векторного пространства, структура многообразия и т. д.
(18) Если эти две фразы и имеют смысл, то они не имеют ничего общего с геометрией.
(19) Компактность — это важное техническое понятие в топологии, которое не так просто объяснить. Скажем лишь то, что к девятнадцатому веку математики (Коши, Вейерштрасс и другие) поставили математический анализ на прочное основание, придав точный смысл понятию предела . Вначале эти пределы использовались для последовательностей действительных чисел . Постепенно стало понятно, что это понятие надо распространить на пространства функций (например, для того, чтобы изучать дифференциальные или интегральные уравнения). Топология своим рождением (а родилась она к 1900 году) частично обязана этим исследованиям. Среди топологических пространств можно выделить компактные пространства , которыми являются те (мы несколько упрощаем, ограничиваясь метрическими пространствами), в которых каждая последовательность элементов допускает существование последовательности более низкого порядка , обладающей пределом. Другое определение (эквивалентность которого первому можно доказать) покоится на свойствах пересечения бесконечных собраний закрытых множеств. В частном случае подмножеств евклидовых пространств конечных измерений множество является компактным, если и только если оно закрыто и ограничено .
(20) В этой фразе Лакан дает неправильное определение открытого множества и совершенно лишенное смысла «определение» предела . Но это лишь небольшие неточности по сравнению с общей путаницей в его речи.
(21) Этот абзац — чистое педантство: очевидно, если множество конечно, его можно в принципе «посчитать» и «упорядочить». Все споры в математике о счетном (см. ниже сноску 32) или о возможности упорядочения множеств относятся к бесконечным множествам.
(22) Насколько мы знаем, этот семинар был опубликован лишь в английском переводе. Мы сделали обратный перевод на французский.
(23) Действительное число называется «иррациональным», если оно не рационально, то есть если оно не может быть выражено в качестве отношения двух целых чисел: таковы, к примеру, квадратный корень из двух или p. (Очевидно, что нуль является целым числом, то есть по необходимости рациональным ). «Мнимые» же числа вводятся для решения уравнений, включающих полиномы, которые не имеют решения среди действительных чисел: например, x 2+ 1 = 0, одно решение которого может быть записано как i = √-1, а другое как — i .
(24) Истолкование «алгоритма» Лакана, почти такое же смешное, как и у него самого, см. в Нанси и Лаку-Лабарт (1990, часть I, гл. 2).
(25) Последняя фраза, возможно, является намеком, впрочем достаточно туманным, на технический метод, используемый в математической логике для определения натуральных чисел (1, 2, 3…) в терминах множеств: 1 отождествляется с пустым множеством ∅ (то есть с множеством, не имеющим ни одного элемента); затем 2 отождествляется с множеством [∅] (то есть с множеством, имеющим в качестве единственного элемента множество ∅); затем 3 отождествляется с множеством [∅, [∅]], (то есть множеством, имеющим два элемента — ∅ и [∅]); и так далее.
(26) Парадокс, на который ссылается Лакан, был введен Бертраном Расселом (1872–1970). Отметим сперва, что большинство множеств не содержат сами себя в качестве элементов. Например, множество всех стульев не является стулом, множество всех натуральных чисел не является натуральным числом. Напротив, множество всех абстрактных идей является абстрактной идеей и т. д. Рассмотрим теперь множество всех множеств, которые не содержат самих себя в качестве элементов.
Читать дальшеИнтервал:
Закладка: