Георг Вильгельм Фридрих Гегель - Учение о бытии
- Название:Учение о бытии
- Автор:
- Жанр:
- Издательство:Типография М.М. Стасюлевича
- Год:1916
- Город:Петроград
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Георг Вильгельм Фридрих Гегель - Учение о бытии краткое содержание
К 200-летию «Науки логики» Г.В.Ф. Гегеля (1812–2012)
Первый перевод «Науки логики» на русский язык выполнил Николай Григорьевич Дебольский (1842–1918). Этот перевод издавался дважды:
1916 г.: Петроград, Типография М.М. Стасюлевича (в 3-х томах — по числу книг в произведении);
1929 г.: Москва, Издание профкома слушателей института красной профессуры, Перепечатано на правах рукописи (в 2-х томах — по числу частей в произведении).
Издание 1929 г. в новой орфографии полностью воспроизводит текст издания 1916 г., включая разбивку текста на страницы и их нумерацию (поэтому в первом томе второго издания имеется двойная пагинация — своя на каждую книгу). Единственным содержательным отличием двух изданий является текст предисловий в первом томе:
1916 г.: Предисловие к русскому переводу, стр. VII–XXII;
1929 г.: От издательства, стр. VII–XI.
В переводе Н.Г. Дебольского встречаются устаревшие на сегодня слова, формы слов и обороты речи.
Особенности электронного издания:
1. Состоит из трех файлов — по числу книг в произведении. В первом файле приводятся предисловия обоих изданий. В третьем файле не приводится алфавитный указатель ко всему произведению (стр. 219–222 бумажного издания).
2. Текст печатается с пагинацией, номер страницы указывается в ее начале нижним индексом в фигурных скобках.
3. Весь текст приводится в современной орфографии (например, в отличие от издания 1929 г. используется твердый знак «ъ» вместо апострофа «’»). Слово «Бог» и относящиеся к нему местоимения (напр., «Он») пишутся с большой буквы. Ударение над русской буквой о передается с помощью буквы европейского алфавита ó.
4. Немецкие слова и выражения приводятся в старой орфографии печатных изданий (напр., «Seyn»).
5. Разрядка текста заменена курсивом (курсив, используемый в бумажных изданиях крайне редко, сохранен).
6. Формулы с дробями приведены к линейному виду. В качестве знака умножения используется звездочка (*).
7. Греческие слова и выражения приводятся без диакритических знаков.
8. Проверка выбранного шрифта: греческая альфа (α), буквы немецкого алфавита (äöüß).
Учение о бытии - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Прежде всего следует напомнить о том, что форма, свойственная в математике рассматриваемой теперь определенности понятия, уже более или менее изъяснена. Качественная определенность количественного, во-первых, вообще обнаружена в количественном отношении , но уже при рассмотрении различных так называемых действий счета (ср. соотв. примеч.) было предусмотрено, что подлежащее еще потом в своем месте рассмотрению степенное отношение есть то, в чем число через приравнение моментов своего понятия, единицы и определенного числа, положено, как возвратившееся к себе, и что тем самым в нем содержится момент бесконечности, бытие для себя, т. е. определения самим собою. Ясно выраженная качественная определенность величин присуща поэтому, как также было указано, существенным образом степенным определениям, и так как специфическая особенность дифференциального исчисления состоит в действиях над качественными формами величин, то свойственный ему математический предмет состоит в обращении с формами степеней, и все задачи и их решения, с которыми имеет дело дифференциальное исчисление, показывают, что интерес сосредоточивается в них единственно на разработке степенных определений.
Как ни важна эта основа, и хотя она сейчас же выдвигает на первое место нечто определенное вместо совершенно формальных категорий переменных, непрерывных или бесконечных величин и т. п., или функций вообще, но она еще слишком обща, с тем же имеют дело и другие действия; уже возвышение в степень и извлечение корней, за сим учение о показательных величинах и логарифмах, ряды, уравнения высших степеней имеют интерес и приложение также лишь к отношениям, основанным на степенях. Без сомнения, все это в своей совокупности составляет систему учения о степенях; но какие именно из различных отношений, в коих положены степенные определения, суть те, которые составляют собственный предмет и интерес для дифференциального исчисления, это должно быть выведено из него самого, т. е. из так называемых его приложений . Последние и составляют поистине самую суть дела, действительный прием математического разрешения известного круга задач; этот прием возник ранее, чем теория или общая часть, и был впоследствии назван приложением лишь в виду позднее созданной теории, которая имела целью установить его общий метод, а также дать ему принципы, т. е. оправдание. Как тщетно было старание найти при современном понимании этого приема такие принципы, которые действительно разрешали бы возникающее при этом противоречие, а не извиняли бы или прикрывали бы {187}его указанием на незначительность математически необходимого, а между тем при этом приеме опускаемого члена, или на сводящуюся к тому же возможность бесконечного или любого приближения и т. п., — это было указано в предыдущем примечании. Если бы в той действительной части математики, которая именуется дифференциальным исчислением, общие начала метода были отвлеченно изложены и иначе, чем это делалось доселе, то сказанные принципы и труд над ними оказались бы столь же излишними, так как в них самих есть нечто ложное и противоречивое.
Если мы исследуем своеобразие этой части математики путем простого выделения того, что в ней существует, то ее предметом окажутся α) уравнения, в которых любое число величин (мы можем здесь вообще остановиться на двух ) связано в определенное целое так, что, во-первых , их определенность состоит в эмпирических величинах , как их постоянных пределах, и затем в способе связи как с последними, так и между собою, как это вообще имеет место в уравнениях; но так как для обеих величин дано лишь одно уравнение (то же справедливо относительно многих уравнений со многими величинами в том смысле, что число уравнений всегда менее, чем число величин), то это уравнения неопределенные ; а во-вторых , что одна из сторон, сообщающая величинам их определенность, состоит в том, что они (по крайней мере одна из них) даны в уравнении в степени высшей , чем первая степень.
Здесь нужно сделать несколько замечаний; во-первых, что величины по первому из вышеизложенных определений имеют вполне лишь свойства таких переменных величин, какие встречаются в задачах неопределенного анализа. Они неопределенны, но так, что если одной почему-либо сообщается вполне определенное т. е. числовое значение, то и другая становится определенною; таким образом, одна из них есть функция другой. Категории переменных величин, функций и т. п. имеют поэтому для той специфической определенности, о которой здесь идет речь, лишь формальное значение, так как этим категориям свойственна общность, не содержащая еще того специфического, к коему направлен весь интерес дифференциального исчисления, равно как из них нельзя вывести этого специфического и через анализ; это суть простые, незначительные, легкие определения, которые становятся трудными лишь постольку, поскольку в них включают для того, чтобы затем вывести из них, то, что им несвойственно, именно специфическое определение дифференциального исчисления. Что касается далее т. наз. постоянной величины , то о ней следует сказать, что она есть ближайшим образом безразличная эмпирическая величина, имеющая для переменных величин определяющее значение лишь по своему эмпирическому определенному количеству, как предел их минимума и максимума; но способ соединения постоянной величины с переменными есть один из моментов для природы той частной функции, которую образуют эти величины. Наоборот, постоянные величины суть сами функции; поскольку, например, прямая линия имеет значение параметра параболы, то это значение приводит к тому, что линия {188}есть функция y 2/ x ; точно также в развитии двучлена постоянная величина, как коэффициент первого члена ряда, есть сумма корней, второго — сумма их произведений по два и т. д., т. е. эти постоянные суть здесь вообще функции корней; там, где в интегральном исчислении постоянная определяется из данной формулы, она считается ее функциею. Эти коэффициенты будут рассмотрены нами далее еще и в другом определении, как функции, конкретное значение которых составляет их главный интерес.
Но главное, в чем рассмотрение переменных величин в дифференциальном исчислении отличается от их свойств в неопределенных задачах, состоит в том вышеприведенном указании, что по крайней мере одна из этих величин или все они должны иметь степень выше первой, причем опять-таки безразлично, все ли они имеют высшую степень или неравные степени; та специфическая неопределенность, которая им тут свойственна, состоит единственно в том, что они суть функции одна другой именно в таком-то степенном отношении . Тем самым изменение переменных величин определяется качественно и, стало быть, непрерывно , и эта непрерывность, которая есть для себя опять-таки лишь формальная категория некоторого тожества вообще, некоторой сохраняющейся в изменении саморавной определенности, имеет здесь свой определенный смысл и именно исключительно в степенном отношении, показатель которого не есть определенное количество, и которое образует собою не количественную , постоянную определенность отношения переменных величин. Поэтому можно и против другого вида формализма заметить, что первая степень есть степень лишь в отношении к высшим степеням; для себя же х есть лишь некоторое неопределенное количество. Поэтому не имеет смысла дифференцировать для себя уравнения прямой линии у = ах + b или ложно равномерного движения s = ct ; если из у = ах или даже из у = ах + b получается а = dy / dx или из s = ct получается ds / dt = с , то в такой же мере тангенс есть а= y / x или ложная скорость s / t = с . Последняя выражается через dy / dx в связи с тем, что получается при развитии формулы равномерно ускоренного движения; но что в системе такого движения имеется момент движения простого, ложно равномерного, т. е. не определенного высшею степенью момента движения, — это есть, как замечено выше, лишь пустое, единственно на рутине метода основанное предположение. Если метод исходит от представления приращения переменной величины, то, конечно, может испытывать приращение и такая величина, которая есть функция первой степени; но когда для нахождения дифференциала берется различие возникшего таким образом второго уравнения от данного, то сейчас же и обнаруживается пустота действия в том, что, как сказано, уравнение до и после него остается для т. наз. приращения тем же, чем и для переменной величины. {189}
Читать дальшеИнтервал:
Закладка: