Алексей Лосев - Итоги тысячелетнего развития, кн. I-II
- Название:Итоги тысячелетнего развития, кн. I-II
- Автор:
- Жанр:
- Издательство:Искусство
- Год:1992
- Город:М
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Алексей Лосев - Итоги тысячелетнего развития, кн. I-II краткое содержание
Последний, итоговой том грандиозного исследования Лосева. Он посвящен двум задачам. Первая: описать последнюю стадию античной мысли, именно ее переход в средневековую, слом античности и формирование совершенно новой эстетики: патристика Востока и Запада и "переходные" "синтетические" формы: халдеизм, герметизм, гностицизм.
Вторая задача восьмого тома - подвести итог вообще всей "эпопее", в этом смысле "Итоги" можно считать чем-то вроде конспекта ИАЭ. Все основные "сюжеты" здесь есть, даются итоговые формулировки, строится целостная картина античной эстетики как таковой, система ее категорий как кратко в ее истории, так и по существу.
Источник электронной публикации: http://psylib.ukrweb.net/books/lose008/index.htm
Итоги тысячелетнего развития, кн. I-II - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Таким образом, по Анаксагору, все на свете погружено в вечное становление, поскольку оно бесконечно делимо; а с другой стороны, все на свете везде и всюду является неподвижным целым, вечно сохраняющим свою отчетливую фигурность. И эта фигурность, доходящая в своей делимости до какой угодно малой величины, не расплывается до полного своего уничтожения, а, наоборот, остается тем целым, к которому его части могут приближаться как угодно близко. После этого неудивительно, что один немецкий ученый понял учение Анаксагора о гомеомериях как открытие теории бесконечно малых [215] Frank A. Plato und die sogenannten Pythagoreer. Halle 1923. 1962, S. 47.
.
И вообще, учение Анаксагора очень часто излагается в слишком элементарной и чересчур примитивной форме. Все знают, например, что, по Анаксагору, вначале имеется хаос отдельных частиц, а уже потом ум приступает к оформлению этого хаоса и к превращению его в космос. Но при этом забывают, что никаких малых частей, которые представляли бы собою как нибудь оформленное целое, по Анаксагору, вовсе не существует. Каждая малая часть, по Анаксагору, может стать еще более малой, и это уменьшение никогда не может довести ее до нуля. По Симплицию, Анаксагор (59 B 3) прямо говорил:"В началах нет ни наименьшего, ни наибольшего… Ибо если все во всем и все из всего выделяется, то и из того, что кажется наименьшим, выделится нечто меньше его, и то, что кажется наибольшим, выделилось из чего то большего, чем оно". В том же фрагменте читаем:"И в малом ведь нет наименьшего, но всегда есть еще меньшее. Ибо бытие не может разрешиться в небытие". Также не может существовать и такого абсолютно большого, в отношении чего не существовало бы ничего еще большего (A 45=II 18, 8 – 10). Поэтому если Анаксагор учит, что вначале все вещи были вместе, то есть что вначале был хаос вещей, то это нужно понимать не в том смысле, что каждый такой элемент был какой то определенной конечной величиной, он не был просто конечной величиной, но такой, которая могла бы стать меньше любой заданной величины. Наличие инфинитезимальной интуиции здесь вполне очевидно.
в)Точно так же уже Демокрит , как это установлено в современной науке, вовсе не понимал свои атомы как в полном смысле неделимые величины. Атомы – это только отдельные пункты постепенного уменьшения любой величины. Они являются каждый раз пределом для уменьшения больших величин и началом дальнейшего уменьшения, причем это уменьшение никогда не может достигнуть нуля. Здесь мы по необходимости выражаемся кратко, и желающих узнать подробности современных представлений об античном атоме с точки зрения бесконечно малых мы относим к нашему специальному исследованию (ИАЭ I 441 – 443). А. О. Маковельский [216] Маковельский А.О. Древнегреческие атомисты. Баку, 1946, с. 245-251.
подобрал все фрагменты из Демокрита, относящиеся к математике. Из этих фрагментов видно, что если, например, конус пересечь плоскостями, параллельными его основанию, то при равных сечениях получается не конус, а цилиндр, а при неравных сечениях образующая конуса не будет прямой линией, а будет ломаной, состоящей из какого угодно количества отрезков. Другими словами, без признания взаимного непрерывного перехода точек на образующей никак нельзя получить самой этой образующей в цельном виде, то есть в виде прямой. В таких случаях Демокрит, очевидно, взывает к признанию континуально–сущностной непрерывности. Неделимость атома у Демокрита является, собственно говоря, невозможностью представлять отдельные точки непрерывного процесса в виде изолированных остановок на путях континуального становления (в частности, уменьшения). Атом неделим потому, что он несет на себе все становление целиком [217] Предлагаемое нами решение вопроса о делимости или неделимости античного атома представляется нам более близким к сущности дела. Однако сущность эта настолько сложна, что даже и в древности шли об этом весьма острые споры. Некоторое представление об античных разногласиях на эту тему можно получить по книге С.Я.Лурье "Теория бесконечно малых у древних атомистов" (М.-Л., 1935, с. 81-83). Понятно, что и в настоящее время вопрос о сущности античного атома все еще является вопросом весьма сложным и запутанным.
.
Между прочим, среди материалов Демокрита имеется один странный текст, который, как он ни странен, все таки решительно говорит о наличии момента непрерывности в такой, казалось бы, дискретной картине мира, как античный атомизм. Именно, мы читаем (59 A 45=II 18, 1 – 3 Лурье 237):"Все те, которые принимают бесконечное множество элементов, как Анаксагор и Демокрит… говорят, что бесконечное непрерывно касанием". Этот термин"касание"(harhë) уже в древности вызывал многочисленные споры, которых мы здесь касаться не будем и которые приводит С. Я. Лурье в своем издании Демокрита [218] Лурье С.Я. Теория бесконечно малых у древних атомистов. – М.-Л., 1935. С. 260-261.
. Не касаясь подробностей, можно сказать, что понимать этот термин можно либо как максимальное приближение одного к другому, либо как слияние одного и другого с исчезновением границы между ними. Собственно говоря, в указанном тексте то и другое понимание касания вполне возможно и относительно Анаксагора и относительно Демокрита.
Если речь идет о максимально близком касании, то, очевидно, здесь мы имеем вполне определенный намек на использование принципа бесконечно малого приближения. И в отношении атомов Демокрита это необходимо признать потому, что, согласно общему учению Демокрита, атомы не могут соприкасаться. Но другое понимание касания тоже возможно. И это будет в согласии с учением Демокрита о неделимости атома, то есть о слиянии составляющих его частей в одно непрерывное целое. При этом любопытно то, что атом, в сущности говоря, вовсе не характеризуется какой нибудь величиной, потому что весь мир тоже есть атом (Демокрит A 47). Получается, таким образом, что непрерывность имеет у Демокрита универсальное значение и характерна для всего космоса, как и у Гераклита.
Самое же главное то, что приведенный текст гласит не только о Демокрите, но и об Анаксагоре. Здесь сама собой напрашивается следующая схема. Именно, если у элейцев на первый план выдвигается непрерывность и все прерывное, оставаясь прерывным, несет на себе печать непрерывного бытия, то у Демокрита – наоборот: если у атомистов на первый план выдвигаются прерывные атомы, то непрерывность внутри самих же этих атомов, хотя она и остается всюду непрерывной, все же несет на себе печать атомистической прерывности. Что же касается Анаксагора, то он явно занимает среднее место между элейцами и Демокритом: каждая гомеомерия делима, поскольку содержит в себе всю бесконечность элементов, и вполне неделима, то есть вполне непрерывна, поскольку руководящим и оформляющим принципом каждой гомеомерии является какой нибудь один элемент, то есть одно качество, одинаково и непрерывно присутствующее во всех вторичных элементах, составляющих гомеомерию. Другими словами, так или иначе, но континуально–непрерывный принцип есть то, с чем никогда не расставалась античная философия.
Читать дальшеИнтервал:
Закладка: