Валерий Савченко - Начала современного естествознания: концепции и принципы
- Название:Начала современного естествознания: концепции и принципы
- Автор:
- Жанр:
- Издательство:«Феникс»
- Год:2006
- Город:Ростов-на-Дону
- ISBN:5-222-09157-0
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Валерий Савченко - Начала современного естествознания: концепции и принципы краткое содержание
В данном пособии самым подробным образом рассмотрены основные естественноисторические этапы становления и развития науки, вопросы философии науки и естествознания, фундаментальные концепции, принципы и положения классического механистического и термодинамического, неклассического полевого и квантово-полевого и постнеклассического эволюционно-синергетического и диссипативно-структурного естествознания. Рассмотрены вопросы связи математики и отражаемой ей естественнонаучной реальности мира. В конце каждой главы и некоторых наиболее сложных параграфов даны резюме, предложены вопросы для обсуждения. Дано около 400 тем рефератов и свыше 400 тестовых вопросов для контроля усвоения и аттестации теоретического материала пособия.
Предназначено для студентов очной и заочной форм обучения гуманитарных и социально-экономических специальностей вузов, а также для обучающихся по дистанционным технологиям. Пособие может быть полезно преподавателям данной учебной дисциплины и широкому кругу лиц других специальностей и профессий, в том числе, студентам естественнонаучных и инженерно-технических специальностей, всем, интересующимся вопросами истории, становления и развития классического, неклассического и постнеклассическтого естествознания, а также проблемами естествознания новейшего времени и его ролью в развитии науки и культуры.
Начала современного естествознания: концепции и принципы - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Невообразимо широк спектр использования этой теории в науке, технике, быту.
Создание классической физики, начатое и осуществленное Галилеем и Ньютоном в XVII–XVIII веках, получило логическое завершение только в конце XIX века. Параллельно с развитием механики, в XVIII веке разрабатываются представления о тепле. Так, один из разделов в тепле — термометрия, получил развитие в начале XVIII века благодаря работам Реомюра, Цельсия, Фаренгейта.
Наибольшее распространение получила система (шкала) измерения температур по Цельсию, отправными реперами в которой послужили температуры замерзания и парообразования воды, принятые Цельсием за 0 и 100 градусов. Познание явлений, связанных с теплом, привело не только к новой ветви классического физического естествознания — термодинамической, но и позволило ввести и по-новому осмыслить ее такие ключевые понятия как теплота, энергия и их взаимосвязь.
Из всех физических терминов и понятий, пожалуй, самым известным является энергия (от греч. energia — деятельность). Это слово прочно вошло в обиход всех людей, и, естественно, употребляя слово «энергия», большинство не знает, что энергия является одним из самых фундаментальных понятий в физике и что с энергией связаны свойства пространства-времени. Среди множества законов природы своей универсальностью выделяются законы сохранения. Среди них один из самых фундаментальных законов — закон сохранения энергии. Как установили ученые, сохранение энергии связано с однородностью времени, что можно упрощенно и образно представить как неизменность темпа времени в разные моменты его течения.
Открытие закона сохранения энергии связывают с именами нескольких ученых, а именно, считают, что Р. Майер, Д. Джоуль, Г. Гельмгольц, Э. Ленц сформулировали закон сохранения и превращения энергии. Открытию закона сохранения и превращения энергии способствовали экспериментальные и теоретические работы в области тепловых процессов, физиологии и самой физики, что, в конечном итоге, привело к созданию науки, получившей название термодинамика. Одной из таких великих работ является труд французского физика и инженера Сади Карно (1796–1832 гг.) «Размышления о движущей силе огня и о машинах, способных развивать эту силу». Работа Карно и явилась началом термодинамики, предложенный им термодинамический способ решения задач используется и в современной физике. В своей работе Карно практически дал формулировку закона сохранения энергии, используя понятие тепло: «Тепло не что иное, как движущая сила, вернее, движение, изменившее свой вид; это движение частиц тела.» Движущая сила существует в природе в неизменном количестве; она, собственно говоря, никогда не создается и не уничтожается.»». С этого момента времени тепло, теплота, тепловая энергия становятся предметом пристального внимания и изучения учеными многих специальностей — физиков, химиков, врачей и т. д.
Физиология того времени также отказывается от таинственных жизненных сил и пытается описать жизненные процессы естественным образом. В 1840 г. петербургский академик Герман Гесс формулирует положение о сохранении количества теплоты, выделяющейся при химических реакциях независимо от способов перехода, если только физическое состояние веществ не изменяется. Это положение означало, что химики уже практически подошли к открытию закона сохранения энергии.
К середине XIX века наука стояла на пороге открытия закона сохранения энергии. Английский физик Джеймс Джоуль (1818–1889) в 1841 г., а российский академик физик и электротехник Эмилий Ленц (1804–1865 гг.) в 1842 г., изучая тепловое действие электрического тока, открывают независимо друг от друга закон о количестве выделяющегося тепла, который получил впоследствии имя Джоуля-Ленца. Более того, хотя Ленц не сформулировал, как таковой, закон сохранения энергии, он неявно этот закон использовал в своих исследованиях. В 1845 г. немецкий врач и ученый Роберт Майер (1814–1878 гг.) написал работу, в которой подробно исследовал различные виды сил (энергий): механическую силу, силу падения (не до конца осознавая, что она является некоторым видом потенциальной энергии), теплоту, электричество, химическую силу. Он составил таблицу всех рассмотренных сил и описал 25 случаев перехода одной формы движения (силы, энергии) в другую, анализируя их на основе закона сохранения. (Кстати, Р. Майер высказал фундаментальную гипотезу о том, что основным источником энергии на Земле является Солнце. С его точки зрения, любое растение является химической лабораторией, в которой происходит преобразование солнечной энергии в химическую. Это явление, получившее название фотосинтеза, было успешно изучено российским ученым Климентием Тимирязевым).
В 1851 г. Майер пишет работу «Замечания о механическом эквиваленте теплоты», в которой, в частности, защищает свой приоритет перед Джоулем в открытии закона сохранения и превращения энергии. Дело в том, что Джоуль, параллельно с Р. Майером и выдающимся немецким ученым-энциклопедистом Германом Гельмгольцем, работал над законом сохранения энергии в экспериментальном плане. Многочисленные опыты Джоуля показали, что механическая энергия превращается в теплоту, и определили механический эквивалент теплоты. Из работ Джоуля следовало, что теплота не является веществом, что она состоит в движении частиц. И в этом месте повествования об энергии поставим простой, даже примитивный вопрос: Что это такое — энергия? Такого же простого ответа дать невозможно.
Энергия существует во всевозможных формах. Есть энергия, связанная с движением (кинетическая энергия); энергия, связанная с гравитационным взаимодействием (энергия тяготения); тепловая, электрическая и световая энергии; энергия упругости в пружинах, химическая энергия, ядерная энергия и, наконец, энергия, которой обладает частица (всякое тело) в силу своего существования — эта энергия пропорциональна массе и рассчитывается по знаменитой формуле Эйнштейна Е = mс 2(формула возникла в механике специальной теории относительности Эйнштейна, см п. 4.1).
Итак, существует много видов энергии, и ученые выяснили достаточное количество информации об их взаимосвязи. Например, сейчас мы знаем, что тепловая энергия тела это есть, по сути, кинетическая энергия хаотического движения частиц в теле. Упругая энергия и химическая энергия имеют одинаковое происхождение — электромагнитное взаимодействие между атомами и молекулами. Очевидно, с каждым из четырех видов фундаментальных взаимодействий (гравитационным, электромагнитным, слабым и сильным) можно связать соответствующую энергию, но, вероятно, энергетические соотношения являются даже более универсальными, чем взаимодействия. Эйнштейн считал, что гравитация порождается энергией, в силу того, что энергия эквивалентна массе, а масса ответственна за гравитацию (будет изложено в пп. 4.1 и 4.4). Более того, сильное (оно же ядерное) взаимодействие имеет обменный характер, и, опосредованно, через массы виртуальных частиц, энергия «проникает» и в сильное взаимодействие. Поразительно другое: мы знаем множество разных видов энергии, очевидно, много еще не знаем, но абсолютно уверены в том, что эта величина (энергия) при различных процессах и превращениях в точности сохраняется.
Читать дальшеИнтервал:
Закладка: