Дэвид Чалмерс - Сознающий ум. В поисках фундаментальной теории
- Название:Сознающий ум. В поисках фундаментальной теории
- Автор:
- Жанр:
- Издательство:Книжный дом «ЛИБРОКОМ»
- Год:2013
- Город:Москва
- ISBN:ISBN 978-5-397-03778-5
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Дэвид Чалмерс - Сознающий ум. В поисках фундаментальной теории краткое содержание
Эта книга, впервые опубликованная в 1996 году, стала одним из самых заметных философских трактатов конца XX века. В наши дни уже не удастся найти серьезных работ по проблеме сознания, в которых не было бы ссылок на Чалмерса.
«Сознающий ум» — увлекательный философский рассказ о глубочайших парадоксах и тайнах сознания. Это провокативная работа, в которой сделана попытка обосновать «натуралистический дуализм», исходя из тезиса автора о нефизической природе сознания и его зависимости от функциональных схем в мозге. Чалмерс также утверждает, что его теория открывает новые перспективы для интерпретации квантовой механики и позволяет говорить о возможности сознательных роботов.
Ясность изложения, смелость идей, изобретательность мысленных экспериментов, точность рассуждений и широкая эрудиция автора делают эту книгу настоящим подарком для всех, кто интересуется философией.
Сознающий ум. В поисках фундаментальной теории - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Но феноменальные свойства не таковы. Как я доказывал в главе 7, эти свойства представляют собой организационные инварианты. И если это так, то отсюда следует, что надлежащая симуляция системы с феноменальными свойствами сама будет обладать ими — благодаря воспроизведению высокодетализированной функциональной организации изначальной системы. Организационная инвариантность принципиально отличает сознание от других упомянутых свойств и открывает путь сильному ИИ.
5. Внешние возражения
По большей части меня интересовали внутренние возражения против сильного искусственного интеллекта, так как они наиболее значимы в контексте этой книги, однако я хотя бы упомяну некоторые внешние возражения. Я уже отмечал, что позиции противников внешних возражений против искусственного интеллекта изначально кажутся сильными: есть все основания считать, что законы физики, по крайней мере в их нынешнем понимании, вычислимы, и что человеческое поведение определяется физическими законами. Если так, то из этого следует, что вычислительная система может симулировать человеческое поведение. Тем не менее возражения время от времени выдвигаются, так что я кратко обсужу их.
Возражения Возможно, самое давнее внешнее возражение
от следования против ИИ состоит в том, что вычислительные сиправилам стемы всегда следуют правилам и поэтому неизбежно будут лишены ряда человеческих способностей, вроде креативности или гибкости. Во многих отношениях это самое слабое из внешних возражений, в частности из‑за его явной нечеткости и неконкретности. В самом деле, на него можно легко ответить, сказав, в свою очередь, что на нейронном уровне человеческий мозг может быть вполне механичным и рефлекторным, но это никоим образом не препятствует креативности и гибкости на макроскопическом уровне. Конечно, оппонент опять‑таки всегда может не согласиться с утверждением о механичности нейронного уровня, но в любом случае не видно хорошего аргумента в пользу тезиса о том, что вычислительная динамика на базовом каузальном уровне несовместима с креативностью и гибкостью на макроскопическом уровне.
Подобное возражение может подкрепляться неявным отождествлением вычислительных систем с символьными вычислительными системами: системами, производящими символьные манипуляции с высокоуровневыми концептуальными репрезентациями — в предельном случае, с системами, жестко выводящими заключения из посылок логики предикатов. Не исключено, что в этой области указанное возражение не лишено оснований, хотя даже это не очевидно. Но в любом случае класс вычислительных систем гораздо шире. К примеру, низкоуровневая симуляция мозга представляет собой некое вычисление, но не символьное вычисление того рода. Если говорить о промежуточном уровне, то к несимвольным вычислениям обращались коннекционистские модели в когнитивной науке. В этих случаях на каком‑то уровне система может следовать правилам, но это напрямую не отражается на поведенческом уровне; и в самом деле, коннекционисты часто говорят, что их метод позволяет получить гибкость на высоком уровне из низкоуровневой механистичности. Как выразился Хофштадтер (Hofstadter 1979), уровень, на котором я мыслю, не обязательно совпадает с уровнем, на котором я существую [7].
Возражения от теоремы Геделя
Иногда утверждается, что теорема Геделя показывает, что вычислительным системам свойственны ограничения, которых нет у людей. Теорема Геделя говорит нам, что в любой непротиворечивой формальной системе, достаточно богатой для произведения арифметических операций, будет существовать некое истинное предложение — Геделевское предложение системы — которое эта система не сможет доказать. И аргумент состоит в том, что поскольку мы, однако же, можем понять, что оно истинно, мы обладаем некоей способностью, отсутствующей у этой формальной системы. Из этого следует, что никакая формальная система не может в точности передавать человеческие способности. (Подобные аргументы выдвигали среди прочих Лукас (Lucas 1961) и Пенроуз (Penrose 1989, 1994).)
Краткий ответ на эти аргументы состоит в том, что нет оснований считать, что и люди могут знать об истинности соответствующих Геделевских предложений. В лучшем случае мы можем знать, что если система непротиворечива, то ее Геделевское предложение истинно, но нет оснований полагать, что мы можем установить непротиворечивость произвольных формальных систем [8]. В особенности это справедливо в случае сложных формальных систем, таких как система, симулирующая реакции человеческого мозга: задача определения непротиворечивости подобной системы вполне может выходить за пределы наших возможностей. Так что вполне может оказаться так, что каждый из нас может симулироваться сложной формальной системой F , такой, что мы не в состоянии установить, является ли она непротиворечивой. И если это так, то мы не сможем узнать, будут ли истинными наши собственные Геделевские предложения.
Существует множество вариаций этого геделевского аргумента, с реакциями оппонентов на это предположение и ответными репликами, нацеленными на то, чтобы обойти эти возражения. Здесь я не буду обсуждать их (хотя я подробно обсуждаю их в Chalmers 1995с). Эти вопросы связаны со множеством интересных и стимулятивных моментов, но, думаю, мы вправе сказать, что тезис о том, что геделевские ограничения не применимы к людям, никогда не был убедительным образом обоснован.
Возражения от невычислимости и континуальности
Приведенные выше возражения являют собой «высокоуровневые» аргументы о невычислимости когнитивных процессов. Но можно было бы попробовать атаковать позиции ИИ и на низком уровне, доказывая невычислимость физических процессов. К примеру, Пенроуз (Penrose 1994) доказывает, что в адекватной теории квантовой гравитации мог бы быть невычислимый элемент. Единственным основанием для такого вывода, однако, оказывается у него вышеупомянутый геделевский аргумент. В самой физической теории нет ничего, что фундировало бы этот вывод; так что если отбросить геделевский аргумент, то исчезает основание верить в невычислимые физические законы. В самом деле, можно было бы попробовать показать, что если каждый элемент мозга, такой как нейрон, имеет лишь конечное множество релевантных состояний, и если существует лишь конечное множество релевантных элементов, то релевантная каузальная структура мозга должна выражаться вычислительным описанием.
Это ведет нас к последнему возражению, которое состоит в том, что процессы в мозге могут быть сущностным образом непрерывными , тогда как вычислительные процессы дискретны, и что эта континуальность может быть сущностной чертой нашей когнитивной компетентности, так что никакая дискретная симуляция не смогла бы воспроизвести эту компетентность. Быть может, создавая приблизительную копию нейрона с помощью элемента, имеющего лишь конечное множество состояний, мы утрачиваем нечто жизненно важное в плане реализации его функций. Оппонент может ссылаться, к примеру, на «чувствительную зависимость от изначальных условий» в определенных нелинейных системах, означающую, что даже небольшая округляющая ошибка на одной из стадий процесса может вести к масштабным макроскопическим различиям на более поздней стадии. Если процессы в мозге именно таковы, то любая дискретная симуляция мозга будет приводить к результатам, отличающимся от тех, которые получаются в континуальной реальности.
Читать дальшеИнтервал:
Закладка: