Дэвид Чалмерс - Сознающий ум. В поисках фундаментальной теории
- Название:Сознающий ум. В поисках фундаментальной теории
- Автор:
- Жанр:
- Издательство:Книжный дом «ЛИБРОКОМ»
- Год:2013
- Город:Москва
- ISBN:ISBN 978-5-397-03778-5
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Дэвид Чалмерс - Сознающий ум. В поисках фундаментальной теории краткое содержание
Эта книга, впервые опубликованная в 1996 году, стала одним из самых заметных философских трактатов конца XX века. В наши дни уже не удастся найти серьезных работ по проблеме сознания, в которых не было бы ссылок на Чалмерса.
«Сознающий ум» — увлекательный философский рассказ о глубочайших парадоксах и тайнах сознания. Это провокативная работа, в которой сделана попытка обосновать «натуралистический дуализм», исходя из тезиса автора о нефизической природе сознания и его зависимости от функциональных схем в мозге. Чалмерс также утверждает, что его теория открывает новые перспективы для интерпретации квантовой механики и позволяет говорить о возможности сознательных роботов.
Ясность изложения, смелость идей, изобретательность мысленных экспериментов, точность рассуждений и широкая эрудиция автора делают эту книгу настоящим подарком для всех, кто интересуется философией.
Сознающий ум. В поисках фундаментальной теории - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Основное содержание квантовой механики заключено в уравнении Шредингера. Это дифференциальное уравнение, определяющее изменение волновой функции системы почти при любых обстоятельствах. Детальная структура этого уравнения не важна для наших целей. Наиболее важной характеристикой является в данном случае то, что оно представляет собой линейное дифференциальное уравнение: если имеются два состояния, А и В, такие, что А изменяется в А ! а В — в В', то состояние, оказывающееся суперпозицией А и Б, будет трансформироваться в суперпозицию A' w В'. Стоит также отметить, что динамика уравнения Шредингера такова, что относительно дискретные состояния имеют тенденцию к размытию с течением времени. Состояние, изначально являющееся суперпозицией значений в каком‑то ограниченном диапазоне, как правило, трансформируются в суперпозицию значений в гораздо большем диапазоне. Наконец, уравнение Шредингера является абсолютно детерминистическим.
Уравнение Шредингера весьма прозрачно и не вызывает больших вопросов. Именно в нем заключена содержательная часть квантовой теории. При применении квантовой теории к практическим или экспериментальным проблемам дело по большей части сводится к вычислению эволюции различных состояний согласно шредингеровской динамике.
Уравнение Шредингера, однако, не исчерпывает сути дела. Согласно этому уравнению, подавляющее большинство физических состояний вскоре трансформируется в суперпозицию широкого диапазона состояний. Но это не сочетается с наблюдаемым нами миром. Когда мы измеряем положение частицы, мы получаем какое‑то определенное значение, а не суперпозицию значений, которую предсказывало бы уравнение Шредингера. Если бы квантовая динамика сводилась к уравнению Шредингера, то даже на макроскопическом уровне мир оказался бы в состоянии дикой суперпозиции. Но наш опыт говорит, что этого не происходит. Стрелки расположены определенным образом, движущиеся объекты наделены определенным и поддающимся измерению импульсом и т. п. Так что здесь должно быть еще что‑то, позволяющее нам переходить от этого уравнения к таким дискретным событиям, которые характеризуют наш опыт.
Второй частью картины в стандартном формализме является постулат измерения (известный также как постулат коллапса или проекции). В нем утверждается, что при определенных обстоятельствах шредингеровская динамика оказывается неприменимой. А именно, утверждается, что при проведении измерения волновая функция коллапсирует в нечто более определенное. Тип ее коллапсирования зависит от того, какое свойство подвергается измерению. К примеру, если мы измеряем спин частицы, то, даже если до этого она находилась в состоянии суперпозиции, она коллапсирует в состояние, в котором спин будет либо вверх, либо вниз. Если мы измеряем положение частицы, то ее волновая функция коллапсирует в состояние с вполне определенным положением [2]. Итоговое состояние по — прежнему соответствует волновой функции, но эта волновая функция такова, что вся ее амплитуда сконцентрирована в определенном положении; во всех остальных местах она оказывается равной нулю. Любой величине, которую мы могли бы измерить, соответствует оператор, и при измерении данное состояние коллапсирует в состояние, являющееся собственным состоянием этого оператора. Собственное состояние оператора — это всегда состояние, в котором соответствующая ему измеряемая величина имеет какое‑то определенное значение. Из этого следует, что когда мы измеряем величину, результатом всегда будет определенное значение этой величины, что в точности согласуется с имеющимся у нас опытом.
Динамика коллапса имеет скорее вероятностный, чем детерминистический характер. Если частица находится в состоянии, являющемся суперпозицией каких‑то положений, то при измерении ее положения мы знаем, что она коллапсирует в состояние с определенным положением, но не знаем, каким оно будет. Скорее для каждого потенциально коллапсированного состояния постулат измерения конкретизирует вероятность того, что данная система коллапсирует в это состояние. Эта вероятность [3]задается квадратом амплитуды волновой функции в положении, соответствующем определенному значению, о котором идет речь. К примеру, если спин частицы — суперпозиция спина — «вверх» (с амплитудой 1/2) и спина — «вниз» (с амплитудой л/3/2), то при измерении спина он коллапсирует в состояние спина — «вверх» с вероятностью 1/4 и в состояние спина — «вниз» с вероятностью 3/4. Амплитуды волновой функции всегда таковы, что сумма соответствующих вероятностей равна 1.
3. Интерпретируя квантовую механику
Два этих принципа вместе составляют исключительно мощное исчисление для предсказания результатов экспериментальных измерений. Для предсказания результатов эксперимента мы выражаем состояние системы в виде волновой функции и вычисляем, как эта волновая функция изменяется во времени в соответствии с уравнением Шредингера до момента измерения. При измерении мы используем амплитуды вычисленной волновой функции для определения вероятности появления различных коллапсированных состояний и того, что измерение даст нам ту или иную величину. Экспериментальные результаты однозначно подкрепляли предсказания данной теории; мало какие научные теории были столь же успешны в плане предсказаний. В качестве исчисления эта теория очень прочна.
Вариант 1: Понимать исчисление буквально
Проблемы возникают, когда мы задаемся вопросом о том, как могло бы работать это исчисление. Что могло бы случаться в реальном мире для обеспечения столь высокой точности предсказаний данного исчисления? Это проблема интерпретации квантовой механики. Существует множество вариантов решения этой проблемы, но все они не лишены недостатков.
Первой естественной реакцией было бы истолковать формализм квантовой механики в буквальном смысле, как мы это делаем с большинством научных теорий. Данное исчисление содержит волновую функцию, задаваемую динамикой уравнения Шредингера и постулатом измерения, и оно работает, так что мы должны предполагать, что оно рисует нам непосредственную картину происходящего в мире. Иначе говоря, состояние системы на самом деле является именно этим волновым состоянием, выражаемым волновой функцией и изменяющимся сообразно динамике, выражаемой двумя упомянутыми базовыми принципами. В основном это состояние изменяется в соответствии с уравнением Шредингера, но при измерении оно изменяется в соответствии с постулатом измерения. Согласно этому воззрению, мир состоит из волн, обычно линейно изменяющихся в суперпозиции и иногда коллапсирующих в более определенное состояние при осуществлении измерения.
Читать дальшеИнтервал:
Закладка: