Юрий Ивлев - Логика для юристов: Учебник.
- Название:Логика для юристов: Учебник.
- Автор:
- Жанр:
- Издательство:Юридический колледж МГУ
- Год:1996
- Город:Москва
- ISBN:5-7251-0100-2
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Юрий Ивлев - Логика для юристов: Учебник. краткое содержание
Учебник соответствует программе курса логики для высших юридических учебных заведений. Основные вопросы излагаются с учетом достижений современной логической науки. В каждый раздел включены упражнения.
Для студентов юридических вузов и факультетов, обучающихся по специальности и направлению “Юриспруденция”. Может быть использован также студентами других специальностей, учащимися средних учебных заведений, всеми желающими изучить логику или усовершенствовать свои знания в этой области.
Логика для юристов: Учебник. - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Статистическая неполная индукция заключается в переносе относительной частоты появления признака с некоторого класса на более широкий класс.
В случае статистической индукции исследуются случайные массовые явления. Эти явления состоят из событий. Появление конкретного события не предсказуемо, но предсказуема частота появления событий того или иного типа, то есть, как говорят, предсказуемы некоторые числовые пропорции целого.
Приведем примеры случайных массовых явлений.
Д о ж д ь. Дождь можно рассматривать как явление, состоящее из большого числа событий — выпадения дождевых капель. В поведении отдельных дождевых капель есть нечто случайное, а именно непредсказуемость. В то же время поведение дождя в целом в определенном смысле предсказуемо. Представим себе такую ситуацию. Начинается дождь. Мы смотрим на два камня одинаковой площади — левый и правый. В последовательности выпадения дождевых капель нет никакой закономерности, но при длительном наблюдении все же можно установить, что на оба камня выпадает одинаковое число капель. Таким образом, дождь — случайное массовое явление, которое предсказуемо в числовых пропорциях целого, но непредсказуемо в отдельных событиях.
Р о ж д е н и е м а л ь ч и к о в. Пусть в каком-то городе дети регистрируются в том порядке, в каком они рождаются: МДДМММДМДДМ... В течение месяца родилось 806 мальчиков, а всего детей родилось 1602. 806 — частота рождения мальчиков, а 806_
1602 — относительная частота рождения мальчиков. В общем случае, если событие произошло в т случаях из n, то т — частота, события, а m
n — относительная частота события, относительная частота события А обозначается f ( А ).
При большом числе наблюдений относительная частота во многих случаях оказывается неизменяемым числом. Тогда она называется устойчивой относительной частотой, или вероятностью события. Вероятность события А обозначается так: Р(А).
Нередко относительная частота появления некоторого события устанавливается путем исследования всех событий, составляющих изучаемое явление. Например, относительная частота рождения мальчиков в некотором городе за один год может быть равной 2602 .
5244
Большинство людей, работающих в статистических учреждениях, занимаются “сплошными” исследованиями конечных классов событий. Иногда “сплошное” исследование является единственным методом, обеспечивающим получение достоверного знания о социальном явлении. Однако такой метод исследования имеет и недостатки: (1) на его основе можно исследовать только конечные классы событий; (2) исследование этим методом больших конечных классов часто требует значительных материальных затрат, а иногда практически невозможно.
Например, на основе “сплошного” исследования нельзя установить число преступлений, фактически совершенных в течение года в стране ( с учётом сокрытых преступлений).
В тех случаях, когда исследуемые классы событий бесконечны, когда “сплошное” исследование практически невозможно или связано с большими затратами, а также когда требуется предсказать события, которые еще не наступили, используется статистическая неполная индукция.
П р и м е р . В городе имеется 1864 автомобиля в личном пользовании. В течение года правила дорожного движения нарушили 134 владельца этих автомобилей. Тогда относительная частота нарушений равна 134_ .
1864 Предполагается, что через 5 лет в городе число автомобилей, находящихся в личном пользовании, увеличится до 3000. Каково ожидаемое число владельцев, которые будут нарушать правила дорожного движения? Если предположить, что относительная частота не изменится, то ожидаемое число равно
3000х 134_ ≈ 210
1864
Схема статистической неполной индукции такова:
Частота появления свойства А у предметов класса S =f(A).
Класс S включается в класс К.
Предметы класса К. обладают свойством А с относительной частотой f(A).
Очевидно, что заключение, получаемое посредством неполной индукции (как нестатистической, так и статистической), может оказаться ложным. Для повышения степени правдоподобия заключения при применении неполной индукции используется специальная методология. В зависимости от вида применяемой методологии различают два вида неполной индукции.
Неполная индукция называется популярной, если при се применении не используется научная методология, т.е. не используются никакие методологические средства, или же используется методология здравого смысла. К методологии здравого смысла относятся следующие принципы: (1) исследовать как можно больше предметов; (2) разнообразить выбор предметов для исследования. Например, при опросе студентов с целью выяснения — освоили они ту или иную тему или нет, в соответствии с методологией здравого смысла нужно опросить как можно больше студентов разных категорий. Соблюдение этих требований несколько повышает степень правдоподобия заключения, но не позволяет считать заключение достаточно правдоподобным.
Второй вид неполной индукции — научная неполная индукция. Она, в свою очередь, бывает двух типов: индукция через отбор случаев, исключающих случайные обобщения, и неполная индукция, в процессе которой при установлении принадлежности предметам свойства не используются какие-либо индивидуальные признаки этих предметов.
Индукцию первого типа будем называть индукцией через отбор, а второго — индукцией на основе общего.
Перечислим некоторые методологические требования, соблюдение которых необходимо при применении индукции через отбор в социальной сфере.
1. Неполную индукцию правомерно применять при исследовании предметов, объединенных в одно целое по общим признакам, целям и т.д. Пусть, например, исследованию подлежат психические особенности людей, совершивших преступления. В этом случае первое требование не будет нарушено. Обозначим выделенную группу людей буквой К.
2. Переносимое с подкласса на весь класс свойство должно быть тесно связано со свойствами, по которым выделена группа К. В нашем случае второе требование не соблюдено, поскольку совершение преступления не обязательно связано с психическими особенностями. Следовательно, нужно ограничить группу К, например, взять группу К' — людей, совершивших преступление в состоянии душевного волнения (аффекта). Этот класс называется генеральной совокупностью.
3. Выбор подкласса класса К' для исследования должен производиться не по переносимому свойству, то есть подкласс S (он называется выборочной совокупностью, или выборкой) следует образовывать не по психическим особенностям людей.
Читать дальшеИнтервал:
Закладка: