Юрий Ивлев - Логика для юристов: Учебник.

Тут можно читать онлайн Юрий Ивлев - Логика для юристов: Учебник. - бесплатно полную версию книги (целиком) без сокращений. Жанр: Философия, издательство Юридический колледж МГУ, год 1996. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Логика для юристов: Учебник.
  • Автор:
  • Жанр:
  • Издательство:
    Юридический колледж МГУ
  • Год:
    1996
  • Город:
    Москва
  • ISBN:
    5-7251-0100-2
  • Рейтинг:
    3.64/5. Голосов: 111
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Юрий Ивлев - Логика для юристов: Учебник. краткое содержание

Логика для юристов: Учебник. - описание и краткое содержание, автор Юрий Ивлев, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Учебник соответствует программе курса логики для высших юридических учебных заведений. Основные вопросы излагаются с учетом достижений современной логической науки. В каждый раздел включены упражнения.

Для студентов юридических вузов и факультетов, обучающихся по специальности и направлению “Юриспруденция”. Может быть использован также студентами других специальностей, учащимися средних учебных заведений, всеми желающими изучить логику или усовершенствовать свои знания в этой области.

Логика для юристов: Учебник. - читать онлайн бесплатно полную версию (весь текст целиком)

Логика для юристов: Учебник. - читать книгу онлайн бесплатно, автор Юрий Ивлев
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

В зависимости от типа методологических средств, применяемых в индуктивных рассуждениях, индуктивные умозаключения делятся на два вида: ненаучную (популярную) индукцию и научную. В процессе ненаучной индукции применяется методология здравого смысла или же методологические средства не используются вовсе. Научная индукция сопровождается научной методологией.

Индуктивная логика, как и дедуктивная, начала формироваться в Древней Греции. По свидетельствам древних авторов, не дошедшее до нас сочинение Демокрита “Канон”, или “О логике”, содержало элементы индуктивной логики. Индуктивную логику разрабатывали Сократ, Платон и Аристотель. Индукция по Сократу — это способ уточнения понятий этики, заключающийся в следующем: берется первоначальное определение какого-либо понятия, например, понятия “мужество”, анализируются различные случаи употребления данного понятия; если этот анализ приводит к необходимости уточнить понятие, то оно уточняется, затем процедура повторяется. Платон понимал под индукцией так называемую обратную дедукцию: если А |= В, то В ||= А. Аристотель — обобщающую индукцию, т.е. переход от знания о некоторых предметах класса к знанию о всех предметах класса. В “Топике” Аристотель писал: “Наведение... есть восхождение от единичного к общему. Например, если кормчий, хорошо знающий свое дело, — лучший кормчий, и точно так же правящий колесницей, хорошо знающий свое дело, — лучший, то вообще хорошо знающий свое дело в каждой области — лучший” [17] Аристотель. Соч. В 4 т. М., 1978. Т. 2. С. 362. .

В средние века индукция практически не разрабатывалась, поскольку на первый план выдвигалось изучение способов выведения знаний из высших (божественных) истин, а также согласование знаний с догматами церкви, опытное же знание всячески принижалось.

Зарождение буржуазного способа производства в недрах феодального общества сделало необходимостью развитие техники, которое не могло осуществляться без развития опытной науки. Великие представители эпохи Возрождения Леонардо да Винчи (1452—1519), Коперник (1473—1543) и другие призывали переходить от истолкования книг к истолкованию природы.

Бурное развитие опытного естествознания в эпоху Возрождения и Новое время обусловило разработку индуктивной логики. В книге “Новый Органон” Ф.Бэкон (1561—1626) заложил основы так называемых методов установления причинной связи между явлениями, создав “таблицы открытия”. Идеи, высказанные Ф.Бэконом, развили Гершель (1792—1871) и Дж.Ст. Милль (1806—1873). Методы установления причинных связей между явлениями обычно называют методами Бэкона-Милля. Существенный вклад в разработку индукции внесли русские логики М.И.Каринский (1840—1917) и Л.В.Рутковский (1859—1920).

В рамках современной логики проблемы индукции разрабатываются с использованием теории вероятностей.

§ 1. ОБРАТНАЯ ДЕДУКЦИЯ

Обратная дедукция — один из видов индуктивных умозаключений. Схема этого вида индукции: В 1, В 2, ... , В n||= А, если и только

если А |= В 1 В 2 ... В nи | A , | В 1 В 2 ... В n, (n≥ 1).

Например, А — суждение “Иванов совершил это преступление”. Из А и некоторой совокупности суждений Г, истинность которых установлена, следует суждение В — “Иванов знал местонахождение похищенных вещей”. В этом случае можно сделать вывод о том, что высказывание В подтверждает высказывание А при наличии Г.

Методологическими требованиями, повышающими степень правдоподобия вывода (индуктивного) посредством обратной дедукции, являются следующие:

1) необходимо находить разнообразные следствия, поскольку разнообразные следствия подтверждают утверждение в большей степени, чем однообразные. Например, для обоснования законов диалектики приводят примеры их действия в различных областях природы, общественной жизни и познания;

2) необходимо находить наиболее сильные следствия. Если А | =В, А | и В | =С, а С | В, то следствие В является более сильным, чем А, и подтверждает А в большей степени (| читается “не следует”);

3) необходимо выводить “неожиданные” следствия. Если А | =В, и В без А малоправдоподобно, а вместе с А весьма правдоподобно, то А при наличии В весьма правдоподобно.

Упражнение 16

1. Подтверждают ли высказывания “Иванов был на месте преступления в то время, когда преступление совершалось”, “Иванов знал потерпевшего” высказывание “Иванов совершил это преступление” при условиях: если это преступление совершил Иванов, то он знал потерпевшего; для совершения этого преступления преступник должен быть на месте преступления в момент его совершения.

2. Подтверждает ли высказывание “Иванов знал брата потерпевшего” высказывание “Иванов является участником данного преступления” при условии: “Если Иванов является участником этого преступления, то он знает, где находятся похищенные деньги. Он не знает, где находятся похищенные деньги, но знает, где находятся похищенные вещи.”

§ 2. ОБОБЩАЮЩАЯ ИНДУКЦИЯ

Обобщающая индукция — это умозаключение, в котором осуществляется переход от знания об отдельных предметах класса или о подклассе класса к знанию о всех предметах класса или о классе в целом.

Различают полную и неполную обобщающую индукцию. Полная обобщающая индукция — это умозаключение от знания об отдельных предметах класса к знанию о всех предметах класса, предполагающее исследование каждого предмета этого класса. Умозаключение от знания лишь о некоторых предметах класса к знанию о всех предметах класса называют (нестатистической) неполной индукцией.

Схема, общая для полной и неполной индукции:

Предмет S 1обладает свойством Р.

Предмет S 2обладает свойством Р.

.

.

.

Предмет S nобладает свойством Р.

Предметы S 1, S 2, …. , S n элементы класса К.

________________________________________

Все предметы класса обладают свойством Р.

Если { S 1, S 2, …. , S n} =K (множества { S 1, S 2, …. , S n} и K равны), т.е. если известно, что исследован каждый предмет класса К, то рассуждение по соответствующей схеме является полной индукцией. Фактически это

дедуктивное умозаключение [18] Заметим, что Д.С.Милль, называя индукцию наведением, не относил умозаключения “от знания о каждом предмете класса к знанию о всех предметах этого же класса” к наведению. Он писал: “Если, заключая, что все животные обладают нервной системой, мы разумеем то же, как если бы сказали “все известные животные, и не более этого”, то предложение не есть общее, и процесс, приводящий к нему, не есть наведение. Но если мы разумеем, что наблюдения над различными видами животных открыли нам закон животной природы и что мы вправе утверждать присутствие нервной системы даже в животных, еще не открытых, то такой процесс, действительно, наведение”. (Милль Д.С. Система логики. СПб.. 1865. Т. 1. С. 336-337) . Если же { S 1, S 2, …. , S n} включается в класс K и в К есть элементы, которые не входят в { S 1, S 2, …. , S n}, то имеет место неполная индукция.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Юрий Ивлев читать все книги автора по порядку

Юрий Ивлев - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Логика для юристов: Учебник. отзывы


Отзывы читателей о книге Логика для юристов: Учебник., автор: Юрий Ивлев. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x