Георгий Рузавин - Логика и аргументация: Учебн. пособие для вузов.

Тут можно читать онлайн Георгий Рузавин - Логика и аргументация: Учебн. пособие для вузов. - бесплатно полную версию книги (целиком) без сокращений. Жанр: Философия, издательство Культура и спорт, ЮНИТИ, год 1997. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Логика и аргументация: Учебн. пособие для вузов.
  • Автор:
  • Жанр:
  • Издательство:
    Культура и спорт, ЮНИТИ
  • Год:
    1997
  • Город:
    Москва
  • ISBN:
    5-85178-037-1
  • Рейтинг:
    4.33/5. Голосов: 91
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Георгий Рузавин - Логика и аргументация: Учебн. пособие для вузов. краткое содержание

Логика и аргументация: Учебн. пособие для вузов. - описание и краткое содержание, автор Георгий Рузавин, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Это первая в отечественной литературе попытка рассмотреть законы и принципы логики в тесной связи с аргументацией, используемой в практических и научных рассуждениях.

Основное внимание обращается на диалог как на ту реальную среду, в рамках которой происходят споры, дискуссии, диспуты и полемики. Изложение логических вопросов подчинено целям выработки навыков критического мышления в процессе аргументации.

Для студентов гуманитарных вузов, а также широкого круга лиц, желающих овладеть навыками аргументации как искусства рационального убеждения.

Логика и аргументация: Учебн. пособие для вузов. - читать онлайн бесплатно полную версию (весь текст целиком)

Логика и аргументация: Учебн. пособие для вузов. - читать книгу онлайн бесплатно, автор Георгий Рузавин
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Ошибки, которые могут возникать при рассмотренном методе определения понятий, были проанализированы еще Аристотелем. Они связаны с несоразмерностью объемов определяемого и определяющего понятий. При правильном определении эти объемы совпадают. Так, объемы равносторонних прямоугольников и квадратов одинаковы, и поэтому определение квадрата как равностороннего прямоугольника правильно.

Если объем определяющего понятия больше объема определяемого понятия, то такое определение будет чрезмерно широким. В таком случае определяемое понятие будет представлять собой вид по отношению к роду. Например, если определить диаметр "как хорду, соединяющую две точки окружности", то легко убедиться, что оно неправильно, ибо диаметром служит не всякая хорда, а только хорда, проходящая через центр окружности.

Когда объем определяющего понятия будет меньше определяемого понятия, то определение считается чрезмерно узким, и потому неправильным. Если бы в предыдущем примере мы исключили из класса хорд все диаметры и определили бы хорду "как прямую, соединяющую две точки окружности, но не проходящую через центр", тогда мы бы исключили из класса хорд все диаметры. Это определение неправильно, поскольку хордами в геометрии называются любые прямые, соединяющие две точки окружности.

Первое требование, предъявляемое к правильности определения - соразмерность определяемого и определяющего понятий по объему. Второе требование запрещает логический круг в определении. Нарушение этого требования сводится к тому, что определяемое понятие (дефиниецдум) определяется через определяющее понятие (дефиниенс), а последнее, в свою очередь, определяется через дефиниендум. Эта ошибка именуется как логический круг в определении (или тавтология), когда определяется "то же через то же" (по латыни: idem per idem).

Конечно, при формулировке подобных ошибочных определений используются другие слова, но смысл их остается тем же самым. Иногда такие определения, к сожалению, встречаются и в учебниках. Мы уже приводили пример в гл. 1, когда логику определяли как науку о правильном мышлении, но в дальнейшем выяснилось, что под правильным мышлением подразумевалось мышление, подчиняющееся законам логики. Обычно логические круги в определении допускаются тогда, когда определяемому понятию трудно найти определяющее понятие. Так происходит при определении весьма широких понятий (или категорий). В связи с этим, например, возможность иногда определяют как то, что может быть, а может и не быть, случайность - как то, что может произойти, а может и не произойти или случиться, количество - как то, что может быть измерено или выражено числом, хотя число служит для количественной характеристики объектов.

Третье требование постулирует, чтобы определения не были отрицательными.

Понятие, как мы неоднократно подчеркивали, служит для выделения определенного класса предметов, выявления их отличия от других классов, что достигается с помощью указания отличительных или существенных признаков предметов. Очевидно, что для этого необходимо использовать положительные, а не отрицательные утверждения. Ведь отрицательные утверждения указывают лишь на то, какими признаками не обладают предметы того или иного класса, а по ним трудно, если не невозможно, составить себе понятие о них. Если мы скажем, что квадраты не прямоугольники, то это оставляет широкий простор для разного рода возможностей, хотя даже чисто отрицательное определение в какой-то мере ограничивает поле поиска правильных определений. Недаром же говорят, что всякое отрицание есть ограничение.

Нередко без отрицательных определений нельзя вообще обойтись. Так, в геометрии параллельные линии определяют как прямые, лежащие в одной плоскости и не имеющие общих точек, т.е. не пересекающихся. Попытка определить их иначе не увенчались успехом.

Четвертое требование напоминает скорее рекомендацию, чем строгое, не допускающее исключений правило. Всякое определение должно быть ясным, четким и недвусмысленным.

Ясность понятия зависит в первую очередь от ясности содержания, т.е. четкости выражения тех признаков, которые отличают один класс вещей от других классов. К сожалению, в гуманитарных науках, в силу сложности самого их предмета и борьбы мнений по разным проблемам, встречаются весьма нечеткие и неоднозначно определенные понятия. Так, даже в логике понятие часто определяется как форма мышления, раскрывающая сущность предметов. Но сущность выявляют также закон, теория и т.п. На самом деле понятие раскрывает не сущность вообще, а отличительные, важные, существенные в каком-либо отношении признаки исследуемых предметов и явлений.

2.3. Деление понятий и классификация

Термин "деление понятий", прочно утвердившийся в логике, может сбить с толку начинающего, так как на самом деле речь идет о делении объемов понятий.

Эта логическая операция сводится к разбиению класса, представляющего объем понятия, на подклассы, являющиеся объемами видов понятий. Самое важное требование при таком делении - соблюдение условия: деление должно производиться по единому признаку. Этот признак называется основанием деления, а объем, который подлежит делению, - объемам делимого понятия; полученные в результате деления подклассы - членами деления.

Правила деления

Цель деления состоит в том, чтобы разграничить и выделить из данного класса все подклассы по некоторому основанию. Очевидно, чтобы такое деление было исчерпывающим, оно должно удовлетворять следующим условиям, которые называют также правилами деления понятий.

1. Деление должно проводиться по вполне определенному основанию. Чаще всего в качестве основания берется один признак, но это не исключает возможности деления по двум или нескольким признакам.

2. Члены деления должны полностью исчерпать объем делимого понятия. Несоблюдение этого условия ведет к ошибке неполного деления либо делению с излишними членами. Так, деление треугольников на прямоугольные и остроугольные будет неполным, потому что в нем пропущены тупоугольные треугольники. Деление же их на равносторонние, разносторонние и равнобедренные содержит лишний член, поскольку равнобедренные треугольники имеют только две равные стороны, и поэтому входят в подкласс разносторонних треугольников.

3. При делении не должно быть скачков, т.е. оно должно быть непрерывным. Это означает, что все члены деления должны быть ближайшими видами делимого понятия. Например, деление сказуемых в предложении на простые, составные именные и составные глагольные нарушает это условие. Чтобы деление было непрерывным, надо было сначала разделить сказуемые на простые и составные, а составные - на именные и глагольные.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Георгий Рузавин читать все книги автора по порядку

Георгий Рузавин - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Логика и аргументация: Учебн. пособие для вузов. отзывы


Отзывы читателей о книге Логика и аргументация: Учебн. пособие для вузов., автор: Георгий Рузавин. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x