Дмитрий Гусев - Логика. Учебное пособие
- Название:Логика. Учебное пособие
- Автор:
- Жанр:
- Издательство:Литагент «Прометей»86f6ded2-1642-11e4-a844-0025905a069a
- Год:2015
- Город:Москва
- ISBN:978-5-9906264-8-5
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Дмитрий Гусев - Логика. Учебное пособие краткое содержание
Что такое логика? Чем занимается эта древняя и в то же время всегда молодая наука? Зачем она нужна, можно ли без нее обойтись, и какую роль она играет в жизни человека? Что такое формы мышления и каковы основные законы мышления? К чему приводят многочисленные логические ошибки, которые мы непроизвольно или сознательно допускаем в мышлении и речи? Что такое доказательство и каковы его разновидности? Что представляют собой основные правила доказательства и ошибки, возникающие при их нарушении? Как сделать свои мысли ясными и отчетливыми, как надо их выражать, чтобы окружающие всегда понимали, что вы хотите сказать; как отстаивать свою точку зрения и убеждать собеседника? Как грамотно вести дискуссию и одерживать победу в споре? Что такое софизмы и логические парадоксы? Обо всем этом вы узнаете, прочитав книгу, которая отличается от многих других учебных пособий по логике тем, что читать ее будет нетрудно: автор, много лет преподающий логику студентам и школьникам, постарался сделать предлагаемый вашему вниманию материал простым и ясным, а по возможности – интересным и увлекательным.
Книга адресована студентам и школьникам, изучающим логику, преподавателям – в качестве обмена педагогическим опытом – и всем, интересующимся логикой и другими гуманитарными науками.
Логика. Учебное пособие - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
1. Если студент посещал занятия, добросовестно изучал материал, выполнял все необходимые задания, то он готов к зачету;
2. Студент Н. посещал занятия, добросовестно изучал материал, выполнял все необходимые задания.
Причем, демонстрация в данном случае проходит в форме утверждающего модуса условно-категорического силлогизма:
Если студент посещал занятия, добросовестно изучал материал, выполнял все необходимые задания, то он готов к зачету.
Студент Н. посещал занятия, добросовестно изучал материал, выполнял все необходимые задания.
Студент Н. готов к зачету.
Приведем другой пример. Тезис: Железо расширяется при нагревании может быть выведен из следующих истинных суждений:
1. Все металлы расширяются при нагревании;
2. Железо является металлом.
В этом случае демонстрация представлена простым (категорическим) силлогизмом:
Все металлы расширяются при нагревании.
Железо является металлом.
Железо расширяется при нагревании.
Соединительное подтверждение тезисапредполагает обобщение всех однородных условий (случаев), при которых он является истинным. Например, тезис: Группа альпинистов, состоящая из пяти человек, готова к восхождению истинен только тогда, когда каждый член группы готов к восхождению. Здесь аргументами, из которых вытекает тезис, должны быть пять истинных суждений:
1. Первый член группы готов к восхождению;
2. Второй член группы готов к восхождению и т. д.
В рассматриваемом примере демонстрация выражается в
форме полной индукции:
Первый член группы альпинистов готов к восхождению.
Второй член группы альпинистов готов к восхождению.
………………………………………………………………………………………..
Пятый член группы альпинистов готов к восхождению.
Группа альпинистов состоит из перечисленных пяти человек.
Группа альпинистов готова к восхождению.
Отводящее подтверждение тезисавыводит его истинность из установленной ложности антитезиса.
Например, для того, чтобы подтвердить истинность тезиса: Из точки, не лежащей на прямой, можно провести только один перпендикуляр к этой прямой надо выдвинуть антитезис: Из точки, не лежащей на прямой, можно провести не только один перпендикуляр к этой прямой (а два, три и более). Далее следует установить ложность этого антитезиса: если, например, из точки, не лежащей на прямой, провести два перпендикуляра к этой прямой, то они образуют с ней треугольник, у которого будет два прямых угла, что невозможно в силу теоремы о сумме внутренних углов треугольника. Как видим, антитезис ложен, а тезис, следовательно, истинен. В таком доказательстве демонстрацией является отрицающий модус условно-категорического силлогизма:
Если из точки, не лежащей на прямой, можно провести более одного перпендикуляра к этой прямой, тогда возможен треугольник с двумя прямыми углами.
Треугольник с двумя прямыми углами невозможен.
Из точки, не лежащей на прямой нельзя провести более одного перпендикуляра к этой прямой.
Отводящее подтверждение тезиса также часто называется апагогическим(от лат. apagoge – уводящий).
Разделительное подтверждение тезисасостоит в исключении всех возможных альтернатив чего-либо, кроме одной, которая и представляет собой доказываемый тезис.
Например, отсутствуют прямые свидетельства в пользу тезиса: Стихотворение знаменитого поэта посвящено К. Однако, при этом известно, что оно могло быть посвящено либо К., либо Н., либо О., и никому, кроме этих трех лиц (последние две возможности представляют собой антитезис). Если точно установлено, что стихотворение не посвящено ни Н., ни О., то следует признать, что оно посвящено К. (из ложности антитезиса выводится истинность тезиса). В данном случае демонстрация проходит в форме отрицающе-утверждающего модуса разделительно-категорического силлогизма:
Стихотворение знаменитого поэта посвящено К. или Н., или О.
Это стихотворение не посвящено ни Н., ни О.
Это стихотворение посвящено К.
Такого рода подтверждение также часто называется доказательством с помощью «метода исключения».
Следует отметить, что косвенные подтверждения обычно менее надежны, чем прямые.
Во-первых , нередко за антитезис принимается суждение, которое не является действительно противоречащим тезису (в случае отводящего подтверждения).
Во-вторых, зачастую перечисляются не все возможные альтернативы – какие-то из них непроизвольно упускаются (в случае разделительного подтверждения).
5.5. Виды и методы опровержения
Опровержение тезиса путем «лишения основания» строится на обнаружении фактов, не согласующихся с аргументами, на которых базируется ложный тезис.
Например: Д олгое время европейцы были уверены в том, что все лебеди белые . Справедливость этого тезиса вытекала из того, что в Англии, Италии, Испании, Франции и других европейских странах встречаются только белые лебеди. Таким образом, тезис: Все лебеди белые базировался на аргументе (основании): Везде существуют только белые лебеди. Понятно, что достаточно всего одного черного лебедя на свете, чтобы признать несостоятельность этого аргумента, разрушить его, или, говоря иначе, – лишить тезис основания. Черных лебедей европейцы впервые обнаружили в XVII в. в Австралии. Здесь демонстрация может быть выражена отрицающим модусом условно-категорического силлогизма:
Если все лебеди белые, то исключено существование черных лебедей.
Существование черных лебедей не исключено.
Не все лебеди белые.
Опровержение тезиса путем «сведения к абсурду»предписывает вывести следствия из опровергаемого тезиса, установить их ложность и сделать заключение о соответствующей ложности тезиса по закону отрицающего модуса условно-категорического силлогизма (из ложного тезиса выводятся ложные, или абсурдные следствия, в результате чего он отвергается).
Например, требуется опровергнуть тезис: Н. должен быть привлечен к уголовной ответственности. Для этого надо вывести из него следствие: Если Н. должен быть привлечен к уголовной ответственности, значит, он совершил преступление. Однако в том случае, когда наверняка установлено, что Н. никакого преступления не совершал, тезис о необходимости привлечения его к уголовной ответственности следует признать неверным (из ложности следствия вытекает ложность тезиса). Как уже говорилось, в таком опровержении демонстрацией является отрицающий модус условно-категорического силлогизма, в котором отрицание следствия ведет к отрицанию основания:
Читать дальшеИнтервал:
Закладка: