Арсений Чанышев - Курс лекций по древней и средневековой философии
- Название:Курс лекций по древней и средневековой философии
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Арсений Чанышев - Курс лекций по древней и средневековой философии краткое содержание
Книга представляет собой продолжение "Курса лекций по древней философии" (Высшая школа, 1981). В ней дается общая картина эволюции древней и ранней средневековой философии и теологии (параллельное рассмотрение античной философии Римской империи и иудаистско-христианского мировоззрения позволяет представить христианство во временном контексте культуры), объективное соотношение философии с парафилософией (религиозно-художественно-мифологическим мировоззрением), с основанной на интеллекте наукой, культурой в целом.
Курс лекций по древней и средневековой философии - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Александрийская библиотека была разрушена вместе с Мусейоном сперва при императоре Феодосии Великом (годы правления 379-395) по приказу александрийского епископа Теофилоса (годы епископата 385-412), ненавидевшего античную культуру. Чуть позднее была растерзана Ипатия.
Обычно окончательную гибель Александрийской библиотеки связывают с арабами, которые дважды подряд брали Александрию (в 640 и в 645 гг. н.э.).
В сухих районах Египта до сих пор находят громадное количество обрывков папирусов - Александрийская библиотека, видимо, размножала книги великих древнегреческих писателей и философов. Больше всего находят папирусов с Гомером, затем по частоте находок идут Демосфен, Еврипид, Менандр, Платон, фукидид, Гесиод, Исократ, Аристофан, Ксенофонт, Софокл, Пиндар, Сапфо. Найдены лишь немногие фрагменты из сочинений Аристотеля, но этот недостаток компенсировался открытием в прошлом веке его дотоле неизвестной работы - это целостный текст "Афинской политии" (оригинал ее находится в Британском музее папирусов). Александрия была центром книжной торговли. Основой книгоиздательства была добыча и выделка папируса, изобилующего в те времена в дельте Нила.
Эллинистическая наука включала в себя как естественные, так и гуманитарные науки. Среди естественных наук развивались физика, астрономия, землеведение. Они были связаны с математикой, этой царицей наук.
Математика. Евклид. Мы почти ничего не знаем о жизни Евклида. В молодости он, возможно, обучался в афинской Академии, которая была не только философской, но и математической и астрономической школой (к Академии примыкал Евдокс Книдский). Затем Евклид жил в Александрии при Птолемеях I и II. Так что время Евклида - первая половина III в. до н. э. Живший много веков позднее неоплатоник Прокл рассказывает, что когда Птолемей I спросил Евклида, заглянув в его главный труд, нет ли более короткой дороги к геометрии, то Евклид якобы гордо ответил царю, что науке нет царского пути.
Евклиду принадлежат такие фундаментальные исследования, как "Оптика" и "Диоптрика". В своей оптике Евклид исходил из пифагорейской теории, согласно которой лучи света - прямые линии, простирающиеся от глаза к воспринимаемому предмету.
Главный труд Евклида - "Начала" (или "Элементы", в оригинале "Стойхейа"). "Начала" Евклида со-1Стоят из 13 книг. Позднее к ним были прибавлены еще две книги.
Первые шесть книг посвящены геометрии на плоскости - планиметрии. В философско-теоретическом отношении, в плане философии математики особенно интересна первая книга, которая начинается с определений, постулатов и аксиом, учение о которых было заложено Аристотелем.
Евклид определяет точку как то, что не имеет частей. Линия - длина без ширины. Концы линии - точки. Прямая линия равно расположена по отношению к точкам на ней. Поверхность есть то, что имеет только длину и ширину. Концы поверхности - линии. Плоская поверхность есть та, которая равно расположена по отношению к прямым на ней. И так далее. Таковы определения Евклида.
Далее следуют постулаты, т. е. то, что допускается. Допустим, что от всякой точки до всякой точки можно провести прямую линию, что ограниченную прямую можно непрерывно продолжить по прямой, что из любой точки, принятой за центр, можно всяким раствором циркуля описать круг, что все прямые углы равны между собой и что если прямая, падающая на две прямые, образует внутренние и по одну сторону углы, меньшие двух прямых, то, будучи продолженными, эти две прямые рано или поздно встретятся с той стороны, где углы меньше двух прямых.
Аксиомы говорят о том, что величины, равные третьей величине, равны между собой, что если к равным прибавить равные, то и целые будут равными, и т. д.
Далее, в первой же книге, рассматриваются треугольники, параллельные линии, параллелограммы. Вторая книга "Начал" содержит геометрическую алгебру: числа и отношения чисел выражаются в пространственных величинах и в их пространственных же отношениях. Третья книга "Начал" исследует геометрию круга и окружности, четвертая - многоугольники. Пятая книга дает теорию пропорций как для соизмеримых, так и для несоизмеримых величин. Книга VI - приложение этих теорий в планиметрии. Книги VII-X содержат теорию чисел, причем X книга трактует иррациональные линии. XI, XII и XIII книги "Начал" посвящены стереометрии, при этом в XII книге применяется метод исчерпания.
Евклида нельзя считать "отцом геометрии". Мы уже говорили, что свои "Начала" были у Гиппократа Хиосского в V в. до н. э. В IV в. до н. э. "Начала" были у Леона, и у Феудия Магнесийского. Метод исчерпания применял Евдокс Книдский, возможный учитель Евклида по Академии. Проблемой иррациональности занимались пифагореец Гиппас Метапонтский, Феодор Киренский, Теэтет Афинский... Однако Евклид-не простой передатчик сделанного до него математиками. В "Началах" Евклида мы видим завершение математики как стройной науки, исходящей из определений, постулатов и аксиом и построенной дедуктивно. Математика Евклида - вершина древнегреческой дедуктивной науки. Она резко отличается от ближневосточной математики с ее практической приблизительной рецептурностью. Не случайно "Начала" Евклида по их логической стройности, ясности, изяществу и законченности сравнивают с афинским Парфеноном.
Правда, существовала легенда, что сам Евклид - не единственный автор дошедших до нас "Начал", что он сам дал лишь догматическое изложение материала, без доказательств, что доказательства были добавлены вышеупомянутым Теоном Александрийским. Теон Александрийский действительно занимался проблематикой "Начал". Но не он один. Этим же занимались и Прокл, и Симплиций. "Начала" Евклида были частично переведены на латинский язык Цензорином и Боэцием. Но эти их переводы затерялись. На Западе вплоть до конца ХII в. находились в обращении тезисы Евклида без доказательств.
Что касается Ближнего Востока, то там Евклид был известен в переводах с греческого на сирийский, а с сирийского - на арабский. Первым арабским философом, который заинтересовался Евклидом, был, по-видимому, аль-Кинди (IX в.). Его интерес ограничивался евклидовой "Оптикой". Однако затем последовала масса переводов и комментариев на "Начала". Эти арабские тексты были переведены в XIII в. на латинский язык. |Первый латинский перевод с греческого оригинала был делан в Европе в 1493 г. и отпечатан в 1505 г. в Венеда. Но до 1572 г., когда Федерико Коммандино в своем атинском переводе исправил эту ошибку, Евклида-математика путали с Евклидом Мегариком.
Из постулатов Евклида видно, что Евклид представлял пространство как пустое, безграничное, изотропное и трехмерное. Бесконечность и безграничность пространства предполагается такими постулатами Евклида, как тезисы о том, что от всякой точки до всякой точки можно провести прямую линию, что ограниченную прямую можно непрерывно продолжить по прямой, что из всякого центра и всяким раствором циркуля может быть описан круг.
Читать дальшеИнтервал:
Закладка: