Георг Гегель - НАУКА ЛОГИКИ. том 1

Тут можно читать онлайн Георг Гегель - НАУКА ЛОГИКИ. том 1 - бесплатно ознакомительный отрывок. Жанр: Философия. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    НАУКА ЛОГИКИ. том 1
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    5/5. Голосов: 91
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Георг Гегель - НАУКА ЛОГИКИ. том 1 краткое содержание

НАУКА ЛОГИКИ. том 1 - описание и краткое содержание, автор Георг Гегель, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

НАУКА ЛОГИКИ. том 1 - читать онлайн бесплатно ознакомительный отрывок

НАУКА ЛОГИКИ. том 1 - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Георг Гегель
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Однако сначала нужно прибавить к сказанному еще одно определение или, лучше сказать, устранить из сказанного одно заключающееся в нем определение. А именно, мы сказали, что переменная величина, в определение которой входит степень, рассматривается внутри ее самой как сумма и притом как система членов, поскольку последние суть функции возвышения в степень, вследствие чего также и корень рассматривается как сумма, и рассматривается так в своей простой определенной форме как двучлен; xn = ( y + z) n = ( yn + nyn-1 z +…) . Это изображение исходило, в целях разложения степени в ряд, т. е. в целях получения функций возвышения в степень, из суммы как таковой; но здесь дело не идет ни о сумме как таковой, ни о происходящем из нее ряде , а от суммы должно брать только соотношение . Соотношение величин как таковое есть то, что, с одной стороны, остается после того, как отвлекаются от plus некоторой суммы как таковой, и что, с другой стороны, требуется для нахождения функций, получающихся в результате разложения в ряд данной степени. Но такое соотношение уже определено тем, что здесь предмет есть уравнение, что ym = axn уже также есть комплекс нескольких (переменных) величин, содержащий в себе их степенное определение. В этом комплексе каждая из этих величин безоговорочно положена как находящаяся в соотношении с другой со значением, можно было бы сказать, некоторого plus в ней самой, – положена как функция прочих величин; их характер функций друг друга сообщает им это определение plus'а, но тем же самым – определение чего-то совершенно неопределенного , а не приращения, инкремента и т. п. Мы, однако, могли бы также и оставить в стороне эту абстрактную точку зрения; можно совершенно просто остановиться на том, что после того, как переменные величины даны в уравнении как функции друг друга, так что эта определенность заключает в себе отношение степеней, теперь сравниваются между собою также и функции возвышения в степень каждой из них, – каковые вторые функции определены далее не чем иным, как самим возвышением в степень. Можно сначала выдавать за произвол или возможность сведение степенного уравнения переменных величин к отношению функций, получающихся в результате их разложения в ряд; лишь дальнейшая цель , польза, употребление должны указать пригодность такого его преобразования; эта перестановка и вызвана единственно только ее полезностью. Если выше мы исходили из изображения этих стеленных определений на примере некоторой такой величины, которая как сумма принимается за различенную внутри себя , то это служило отчасти лишь для того, чтобы указать, какого вида эти функции, отчасти же в этом заключается способ их нахождения.

Мы, таким образом, имеем перед собой обычное аналитическое разложение в ряд, понимаемое для целей диференциального исчисления так, что переменной величине дается приращение dx , i , а затем степень двучлена раскладывается в соответствующий ряд. Но так называемое приращение должно быть не определенным количеством, а лишь формой , все значение которой сводится к тому, чтобы быть вспомогательным средством. Стремятся же в этом случае, по признанию, определеннее всего выраженному Эйлером и Лагранжем , а затем подразумеваемому вышеупомянутым представлением о пределе, лишь к получающимся при этом степенным определениям переменных величин, к так называемым коэфициентам (эти коэфициенты суть, правда, коэфициенты приращения и его степеней, которые определяют порядок ряда и которым принадлежат различные коэфициенты). При этом можно сделать еще и то замечание, что так как приращение, не имеющее определенного количества, принимается лишь для целей разложения в ряд, то было бы всего уместнее обозначить его единицей (цифрой 1), потому что приращение всегда встречается в разложении только как »множитель, а множитель «единица» как раз и достигает той цели, чтобы приращение не вносило никакой количественной определенности и никакого количественного изменения. Напротив, dx , сопровождаемый ложным представлением о некоторой количественной разности, и другие знаки, как например, i , обремененные бесполезною здесь видимостью всеобщности, всегда выглядят, как некоторое определенное количество и его степени , и притязают, что они суть нечто такое, каковое притязание заставляет затем трудиться над тем, чтобы, несмотря на это, избавиться от них, отбросить их. Для сохранения формы ряда, развернутого по степеням, можно было бы с таким же удобством присоединять обозначения показателей как indices (индексы) и к единице. Но и помимо этого необходимо абстрагироваться от ряда и от определения коэфициентов по месту, которое они занимают в ряде, так как отношение между всеми ими одно и то же; вторая функция выводится из первой точно так же, как первая из первоначальной, и для той, которая по счету является второй, первая производная функция есть опять-таки первоначальная. По существу же интерес направлен не на ряд, а единственно только на получающееся в результате развертывания ряда степенное определение в его отношении к для него непосредственной величине. Стало быть, вместо того, чтобы считать это определение коэфициентом первого члена развертывающегося ряда, было бы предпочтительнее (так как каждый член есть первый относительно следующих за ним членов ряда, а такая степень в качестве степени приращения, как и сам ряд, не имеет сюда отношения) употреблять простое выражение « производная степенная функция », или, как мы сказали выше, « функция возвышения величины в степень », причем предполагается известным, каким образом получение производной функции берется как заключенное внутри некоторой степени развертывание.

Но если в этой части анализа собственно-математическое начало есть не что иное, как нахождение функции, определенной через развертывание степени, то является дальнейший вопрос, что следует предпринять с полученным таким образом отношением, в чем его приложение и употребление , или на самом дело вопрос, для какой цели ищут таких функций. Диференциальное исчисление вызвало к себе большой интерес именно тем, что оно находило такие отношения в конкретных предметах , которые могут быть сведены к этим абстрактным аналитическим отношениям.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Георг Гегель читать все книги автора по порядку

Георг Гегель - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




НАУКА ЛОГИКИ. том 1 отзывы


Отзывы читателей о книге НАУКА ЛОГИКИ. том 1, автор: Георг Гегель. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x