Элизабет Таскер - Фабрика планет. Экзопланеты и поиски второй Земли
- Название:Фабрика планет. Экзопланеты и поиски второй Земли
- Автор:
- Жанр:
- Издательство:Альпина Паблишер
- Год:2019
- Город:Москва
- ISBN:978-5-91671-949-9
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Элизабет Таскер - Фабрика планет. Экзопланеты и поиски второй Земли краткое содержание
Эти новые миры совсем не похожи на фантазии писателей — планеты крупнее Юпитера, где год длится всего одну неделю, планеты, обращающиеся вокруг останков мертвых звезд, планеты с двумя солнцами в небе и планеты вовсе без солнца. Где то там далеко существуют миры размером с Землю, на одной половине которых всегда день, а на другой — вечная ночь, водные миры, вся поверхность которых скрыта под толщей океанов, и лавовые миры, извергающие моря магмы.
«Фабрика планет» — это рассказ об экзопланетах, то есть планетах, обращающихся вокруг звезд за пределами нашей Солнечной системы.
Фабрика планет. Экзопланеты и поиски второй Земли - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Но есть одна хорошо известная проблема, которая не дает использовать метан в качестве биомаркера, а именно Титан. Несмотря на постоянную потерю метана под воздействием солнечного света, его запасы в атмосфере этого спутника постоянно восполняются за счет высвобождения метана из подповерхностного слоя льда в результате деятельности криовулканов. Благодаря этому метан на Титане не заканчивается вот уже несколько миллиардов лет. На Земле также присутствует несколько источников метана небиологического происхождения, включая вулканы и глубоководные «черные курильщики» — высокотемпературные геотермальные источники. Поэтому в условиях высокой геологической активности в атмосфере мертвого мира может присутствовать метан.
Теоретически мы можем отличить биологические источники метана от абиотических. Молекула метана состоит из атома углерода и четырех атомов водорода. Жизнь на Земле имеет дело главным образом с углеродом-12 — наиболее распространенной формой углерода с шестью нейтронами в ядре. Альтернативой ему является углерод-13, атом которого тяжелее благодаря наличию дополнительного нейтрона и потому требует больше энергии для участия в реакциях. Неорганический материал на Земле содержит в 89,9 раз больше углерода-12, чем углерода-13, тогда как у живой материи этот показатель выше — 95. Разница не так велика, но ее можно обнаружить. Зонд «Гюйгенс» на Титане провел измерение соотношения двух типов углерода в метане, содержащемся в атмосфере спутника, получив значение 82,3, которое намного ближе к величине, характерной для неорганического вещества на Земле. Если бы мы научились различать атомы углерода в метане в атмосфере экзопланет, у нас бы появился маркер, указывающий на возможное присутствие жизни.
В качестве более надежного биомаркера может выступать комбинация молекул. Когда в атмосфере присутствуют и кислород, и метан, они объединяются, образуя углекислый газ. Если наблюдается высокое содержание и того и другого, это означает, что существует источник, обеспечивающий постоянное наполнение атмосферы этими двумя молекулами, не давая ей достигнуть равновесия. Такие комбинированные биомаркеры намного реже имеют абиотическое происхождение, но все-таки полностью исключать такую возможность нельзя. Например, при наблюдении титаноподобный спутник, обращающийся вокруг богатой кислородом планеты, может показаться одиноким миром со смешанной метано-кислородной атмосферой.
В качестве дополнительного признака влияния живых форм на атмосферу могут служить сезонные изменения в ее составе на протяжении планетного года. Когда зима на Земле сменяется весной, биосфера перерождается в результате цветения растений в условиях более теплой погоды. Это оказывает заметное влияние на уровень углекислого газа в нашей атмосфере. Согласно данным измерений, проводимых в обсерватории «Мауна-Лоа» на Гавайях с 1958 г., уровень углекислого газа не только неуклонно повышается в результате глобального изменения климата, но и ежегодно претерпевает изменения в результате смены сезонов.
С приходом весны и увеличением количества солнечного света на фотосинтезирующих растениях распускаются новые листья, которые поглощают больше углекислого газа из воздуха. С наступлением зимы листва отмирает, и уровень углекислого газа вновь поднимается. Разумеется, весна на одной половине Земли сопровождается зимой на другой. Поэтому для заметного изменения уровня углекислого газа необходимо, чтобы в северном и южном полушариях была разная площадь покрытых растительностью территорий. На Земле в Северном полушарии произрастает больше растений, чем в Южном, поэтому смена весеннего и зимнего сезонов в северном полушарии планеты сопровождается ежегодными колебаниями уровня углекислого газа. Равномерное распределение растительности по поверхности планеты вряд ли возможно, а значит, объяснить наличие такого цикла, выявляемого по результатам наблюдения за движением планеты вокруг ее звезды, без наличия на ней биологического вещества достаточно трудно.
Зеленый всплеск, красный край
Атмосфера — не единственная характеристика планеты, на которой сказывается присутствие жизни. Еще один потенциальный биомаркер — цвет планеты, или, говоря более научным языком, длины волн излучения, которые преобладают в отражаемом планетой свете. Мы видим зеленый цвет на поверхности Земли благодаря широкому распространению фотосинтезирующих растительных форм жизни, отражающих зеленый свет. Все дело в хлорофилле в клетках растений, который рассеивает свет с длиной волны около 500 нм [48] 1 нм = 0,000 000 001 м.
, но при этом поглощает попадающий на него свет с чуть меньшими и большими длинами волн. Кроме того, растения на нашей планете эффективно отражают свет с длинами волн, превышающими те, которые воспринимаются нашими глазами как цвет. Излучение в инфракрасном диапазоне с длиной волны около 700–800 нм и более либо отражается, либо беспрепятственно проходит сквозь растение. Эту границу называют красным краем . Благодаря такой отражающей способности растения прекрасно видны при инфракрасной съемке, что позволяет изучать растительный покров со спутников.
В силу этих двух особенностей в отраженном нашей планетой свете присутствуют два четко различимых явления — зеленый всплеск и красный край . Если бы могли проанализировать длины волн в спектре света, отраженного внесолнечной планетой, резкие всплески и падения такого рода могли бы служить биомаркером, указывающим на присутствие растительных форм жизни.
Но являются ли длины волн, поглощаемые нашими растениями, универсальными для всей растительности, которая может существовать на внеземных мирах? Чтобы наши рассуждения не походили на гадание на кофейной гуще, сначала мы должны понять, что именно делает наши растения зелеными.
На первый взгляд, с точки зрения эволюции формирование у растений способности отражать зеленый свет не кажется очевидным преимуществом. Хотя с поверхности Земли Солнце кажется желтым, на самом деле большую часть энергии оно излучает как раз в зеленой области спектра. Свой желтый оттенок свет получает из-за рассеивания синего света атмосферой. Таким образом, отражая зеленый свет, земные растения в ходе эволюции отказались от самой значительной доли солнечной энергии.
Однако при более детальном рассмотрении такому эволюционному повороту находится вполне разумное объяснение. Энергия, излучаемая Солнцем на определенной длине волны, складывается из энергии этой длины волны, а также ее интенсивности или яркости. Если рассматривать излучение как поток крохотных фотонов, заключенная в нем энергия будет зависеть от энергии каждого фотона и их количества.
Читать дальшеИнтервал:
Закладка: