Элизабет Таскер - Фабрика планет. Экзопланеты и поиски второй Земли
- Название:Фабрика планет. Экзопланеты и поиски второй Земли
- Автор:
- Жанр:
- Издательство:Альпина Паблишер
- Год:2019
- Город:Москва
- ISBN:978-5-91671-949-9
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Элизабет Таскер - Фабрика планет. Экзопланеты и поиски второй Земли краткое содержание
Эти новые миры совсем не похожи на фантазии писателей — планеты крупнее Юпитера, где год длится всего одну неделю, планеты, обращающиеся вокруг останков мертвых звезд, планеты с двумя солнцами в небе и планеты вовсе без солнца. Где то там далеко существуют миры размером с Землю, на одной половине которых всегда день, а на другой — вечная ночь, водные миры, вся поверхность которых скрыта под толщей океанов, и лавовые миры, извергающие моря магмы.
«Фабрика планет» — это рассказ об экзопланетах, то есть планетах, обращающихся вокруг звезд за пределами нашей Солнечной системы.
Фабрика планет. Экзопланеты и поиски второй Земли - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
В действительности Солнце излучает больше красных фотонов, чем зеленых, но большая длина волны красного света означает, что каждый отдельно взятый красный фотон переносит меньше энергии, чем зеленый. С другой стороны, синие фотоны переносят больше энергии, но при этом их намного меньше. Таким образом, в ходе адаптации к условиям жизни на нашей планете растения научились извлекать выгоду из многочисленности красных фотонов и мощной энергии отдельных синих фотонов. Поэтому зеленые фотоны, которые не так многочисленны, как красные, и не обладают таким количеством энергии, как отдельно взятые синие, оказались не нужны.
Если исходить из того, что, адаптируясь к условиям среды, растения стараются использовать длины волн в тех частях спектра, где фотоны богаты энергией или отличаются многочисленностью, их свойства будут определяться составом атмосферы планеты и особенностями звезды: атмосфера способна лишить поверхность планеты доступа к поглощаемым длинам волн, а от температуры звезды зависит количество энергии, излучаемой на каждой длине волны. Мы можем наблюдать последствия работы такого фильтра на Земле. Растения, живущие в океанских водах и под слоем песка, отличаются цветом от растительности на поверхности. В процессе адаптации к поглощению тех длин волн, которые добираются до них, они приобрели разные цвета. Например, вода пропускает синий свет, но поглощает красный, делая невозможной эволюцию растений, использующих красные фотоны, дальше определенной глубины. В результате такой эволюции появились водоросли различных оттенков коричневого, красного и пурпурного цветов, отражающие фотоны, которые они не научились использовать.
В отличие от процесса отбора только тех фотонов, которые оптимально подходят для фотосинтеза, рассеивание длин волн за «красным краем» может объясняться необходимостью контроля температуры с целью недопущения перегрева. Если бы растения поглощали длины волн инфракрасного диапазона, а также те, что относятся к видимой части спектра, избыток энергии мог бы привести к необратимому изменению белков, фактически поджарив растения. Вот почему наши растения отражают свет в инфракрасной и зеленой области спектра в окружающее пространство. Но что будет, если Солнце изменится?
Как уже отмечалось, у нас есть основания полагать, что жизнепригодные планеты в зоне умеренных температур могут быть покрыты организмами, получающими энергию от света. Однако они совсем не обязательно должны быть зеленого цвета.
В системах с холодными красными карликовыми звездами большая часть энергии излучается в инфракрасном диапазоне. Считается, что при характерных для него больших длинах волн фотосинтез также возможен, но из-за их меньшей энергии может потребоваться в два раза больше фотонов. Чтобы обеспечить поглощение максимального количества света, растения на планете в системе с красным карликом могут быть не зелеными, а черными. Более того, учитывая, что теперь им придется иметь дело с фотонами из инфракрасного диапазона, у растений на такой планете может не быть ярко выраженного красного края, или же он может сдвинуться в другую область спектра.
Растения на планетах в системах со звездами горячее нашего Солнца могут столкнуться с противоположной проблемой: поверхность там будет подвергаться бомбардировке высокоэнергетическими синими фотонами. В результате листва может приобрести синий оттенок, который позволит ей отражать эти фотоны, чтобы спастись от перегрева. В любом случае, выражение «в чужом дворе трава всегда зеленее» вряд ли будет применимо к внеземным мирам.
Как и в случае со следами биологической активности в атмосфере, на связь цвета планеты с цветом растительности должны указывать сезонные изменения. По ним можно отличить цвет, обусловленный ростом растительности, от цвета, связанного с цветом горных пород. Спектр отражаемого спутником Юпитера Ио света начинается в синей области при длине волны 450 нм. Все, что чуть ближе к красному, отражается от поверхности, все, что относится к синему, поглощается. Причина не связана с какой-либо формой растительной жизни, которой удается чудесным образом выживать на этом мире с высокой вулканической активностью. Все дело в слое серы, покрывшем поверхность спутника в результате обильных извержений.
Биомаркеры, по которым можно будет сделать надежный вывод о наличии жизни на планете в какой-либо звездной системе, скорее всего, не будут сводиться к одной характеристике — это будет комбинация признаков, указывающих на воздействие жизни на планету. Как в сложном пазле, мы не сможем быть уверены, что полученная нами картина обитаемого мира соответствует действительности, пока не найдем и не сложим вместе множество разных фрагментов.
Так сколько же времени, по мнению Мишеля Майора, нам понадобится, чтобы научиться отличать пригодные для жизни планеты от непригодных? «Двадцать пять лет, — ответил он мне. — На это уйдет жизнь еще одного поколения».
Словарь терминов
Астрономическая единица (а.е.) — единица измерения расстояний в планетных системах. 1 а.е. (= 150 000 000 км = 0,000016 светового года) — расстояние между Солнцем и Землей.
Блуждающая планета (планета-сирота) — планета, которая не обращается вокруг звезды.
Газовый гигант — планета того же типа, что Юпитер, Сатурн, Уран и Нептун. Обладает твердым ядром, окруженным огромной атмосферой толщиной в тысячи километров.
Горячий юпитер — газовый гигант, обращающийся вблизи родительской звезды.
Двойная звезда (двойная система) — две звезды, обращающиеся вокруг общего центра масс.
Зона умеренных температур — область вокруг звезды, в которой температуры на поверхности землеподобной планеты обеспечивают возможность существования воды в жидкой фазе. Также ее называют «зоной жизни», «зоной обитаемости» и «зоной Златовласки».
Космический телескоп «Кеплер» — космическая обсерватория NASA, занимающаяся поиском внесолнечных планет с помощью транзитного метода.
Космический телескоп «Спитцер» — космическая обсерватория NASA, предназначенная для наблюдения космоса в инфракрасном диапазоне.
Красный карлик — звезда меньше и холоднее нашего Солнца. Другое название — карлик спектрального класса M.
Круговорот углерода — геологический процесс, контролирующий количество углекислого газа в атмосфере Земли. Благодаря тому, что углекислый газ является парниковым и обладает способностью удерживать тепло, данный процесс выступает в роли своего рода термостата, регулирующего среднюю температуру на нашей планете.
Читать дальшеИнтервал:
Закладка: