Коллектив авторов - Что мы думаем о машинах, которые думают [Ведущие мировые ученые об искусственном интеллекте]

Тут можно читать онлайн Коллектив авторов - Что мы думаем о машинах, которые думают [Ведущие мировые ученые об искусственном интеллекте] - бесплатно ознакомительный отрывок. Жанр: sci_popular, издательство Альпина нон-фикшн, год 2017. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Что мы думаем о машинах, которые думают [Ведущие мировые ученые об искусственном интеллекте]
  • Автор:
  • Жанр:
  • Издательство:
    Альпина нон-фикшн
  • Год:
    2017
  • Город:
    Москва
  • ISBN:
    978-5-9614-4944-0
  • Рейтинг:
    4/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Коллектив авторов - Что мы думаем о машинах, которые думают [Ведущие мировые ученые об искусственном интеллекте] краткое содержание

Что мы думаем о машинах, которые думают [Ведущие мировые ученые об искусственном интеллекте] - описание и краткое содержание, автор Коллектив авторов, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
«Что вы думаете о машинах, которые думают?» На этот вопрос — и на другие вопросы, вытекающие из него, — отвечают ученые и популяризаторы науки, инженеры и философы, писатели-фантасты и прочие люди искусства — без малого две сотни интеллектуалов. Российскому читателю многие из них хорошо известны: Стивен Пинкер, Лоуренс Краусс, Фрэнк Вильчек, Роберт Сапольски, Мартин Рис, Шон Кэрролл, Ник Бостром, Мартин Селигман, Майкл Шермер, Дэниел Деннет, Марио Ливио, Дэниел Эверетт, Джон Маркофф, Эрик Тополь, Сэт Ллойд, Фримен Дайсон, Карло Ровелли… Их взгляды на предмет порой радикально различаются, кто-то считает искусственный интеллект благом, кто-то — злом, кто-то — нашим неизбежным будущим, кто-то — вздором, а кто-то — уже существующей реальностью. Такое многообразие мнений поможет читателю составить целостное и всестороннее представление о проблеме.

Что мы думаем о машинах, которые думают [Ведущие мировые ученые об искусственном интеллекте] - читать онлайн бесплатно ознакомительный отрывок

Что мы думаем о машинах, которые думают [Ведущие мировые ученые об искусственном интеллекте] - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Коллектив авторов
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Машины уже помогают нам лучше формулировать вопросы. Их информационные аппетиты позволяют нам мечтать о том, чтобы по-новому взаимодействовать с нашим окружением. Но если бы машины могли мыслить, какие вопросы о Вселенной интересовали бы их в первую очередь? Как бы они подходили к их разрешению? Готова поспорить, у людей было бы что добавить к ответам на их вопросы. Все-таки наш мозг — удивительная машина.

Мыслящие машины — это старые алгоритмы на более быстрых компьютерах

Барт Коско
Преподаватель электромеханики; преподаватель инженерного дела и правоведения в Университете Южной Калифорнии; автор книги «Шум» (Noise)

Машины не думают. Они аппроксимируют функции. Они превращают входные данные в выходные данные. Кнопка карманного калькулятора «корень квадратный» превращает число 9 в число 3. Хорошо тренированная сверточная нейронная сеть превращает изображение вашего лица в результат «1». Она также превращает изображение, на котором вашего лица нет, в результат «0».

Многослойная или «глубинная» нейронная сеть сводит оценку любого изображения к оценке вероятности того, что на нем есть ваше лицо. Таким образом, тренированная сеть аппроксимирует вероятностную функцию. Этому процессу, чтобы хоть иногда получать правильные результаты, требуется ошеломительное количество вычислений. Но в конечном итоге он все равно преобразует входные данные в выходные. Он всего лишь аппроксимирует функцию, даже если результат походит на человеческое восприятие или мышление. Для этого просто нужно много вычислительной мощности.

«Разумные» машины аппроксимируют комплексные функции, которые работают с паттернами, такими как речь, изображения или любые другие сигналы. Паттерны изображений обычно состоят из множества пикселей или вокселей и часто имеют большую размерность. Связанные с ними паттерны вполне могут выходить за пределы того, что в состоянии охватить человеческий разум. В этом вопросе преимущество компьютеров будет усиливаться по мере их совершенствования.

В решении числовых задач большого объема нам удалось добиться действительно серьезных успехов. Это стало следствием постоянного удвоения плотности монтажа схем, которое происходит примерно раз в два года в соответствии с законом Мура, а не появления каких-то принципиально новых алгоритмов. Такой экспоненциальный рост вычислительной мощности позволяет обычным с виду компьютерам решать более сложные задачи, связанные с большими данными и распознаванием паттернов.

Рассмотрим наиболее популярные алгоритмы больших данных и машинного обучения. Один алгоритм неконтролируемый (ему не требуется учитель, чтобы присваивать данным метки), другой — контролируемый (ему требуется учитель), именно с ними связана значительная часть работ в области прикладного ИИ.

Неконтролируемый алгоритм называется кластеризацией методом k-средних, и, возможно, это самый популярный способ работы с большими данными. Он объединяет подобное с подобным и лежит в основе Google News. Начнем с миллиона измерительных точек. Сгруппируем их в 10, 50 или 100 кластеров или паттернов. Это вычислительно сложная задача. Но кластеризация методом k-средних является итеративным способом формирования кластеров по меньшей мере с 1960-х годов. Что изменилось, так это размерность задач, с которыми могут справляться современные компьютеры. Сам алгоритм называли разными именами, так или иначе намекающими на ИИ, например «самоорганизующаяся карта» или «адаптивная квантизация векторов». Но это все тот же старый двухступенчатый итеративный алгоритм из 1960-х.

Контролируемый алгоритм — это алгоритм нейронной сети, который называется обратным распространением. Именно он чаще всего используется в машинном обучении. Обратное распространение получило свое название в 1980-х годах. Появилось оно по меньшей мере десятью годами ранее. Алгоритм обучается на основе образцов, которые ему дает пользователь или супервизор. Например, вы показываете изображения с вашим лицом и без него. Они проходят через несколько слоев похожих на коммутаторы нейронов, пока те не эмитируют окончательный результат, который может быть представлен одним числом. Вам нужно получить число «1», если на входном изображении есть ваше лицо, и «0» в противном случае. Сеть изучает паттерны вашего лица, пока перебирает их в ходе тысяч и миллионов итераций. Ни на одном из этих шагов или переборов не возникает никакого интеллекта или мышления. И ни одно из уточнений любого из сотен или тысяч параметров сети не отражает того, как настоящие синапсы узнают новые паттерны нервной стимуляции. Скорее это как если бы люди выбирали, что им делать дальше, на основании ничтожного отрицательного воздействия, которое их действия окажут на процентную ставку по десятилетним облигациям государственного займа США.

Вывод: оба популярных алгоритма ИИ — это отдельные случаи одного и того же стандартного алгоритма современной статистики, алгоритма ожидания и максимизации (EM-алгоритма). Поэтому любой предположительно связанный с ними интеллект — просто заурядная статистика. EM — это двухступенчатая итеративная схема подъема на холм вероятности. Он не всегда попадает на вершину самого высокого холма — как правило, это оказывается вершина ближайшего холма. Возможно, ни один алгоритм обучения на большее и неспособен. Аккуратно добавленный шум и другие поправки могут ускорить восхождение. Но все пути так или иначе сходятся к вершине холма, к области наиболее правдоподобного равновесия. Все они заканчиваются в своеобразной нирване машинного обучения с локально-оптимальным распознаванием образа или аппроксимацией функции. Эти точки равновесия на вершинах холмов будут выглядеть все более впечатляюще по мере увеличения скорости компьютеров. Но с мышлением они связаны не больше, чем вычисление некоторых сумм и выбор наибольшей из них.

Следовательно, значительная часть машинного мышления — это просто машинное «восхождение на холмы».

Обзорная статья, написанная в 1961 году Марвином Минским, «Шаги к искусственному интеллекту» (Steps Toward Artifcial Intelligence) в этом контексте может стать поучительным чтением, поскольку со времени ее написания в плане развития алгоритмов мало что изменилось. Минский даже предсказал нашу склонность видеть в требующем больших вычислительных ресурсов «восхождении на холмы» какую-то исключительную познавательную способность: «Возможно, то, что относится к обычному поиску экстремума на одном уровне, однажды покажется (на более низком уровне) неожиданными „озарениями“».

Есть другие алгоритмы ИИ, но большая их часть попадает в те категории, о которых писал Минский. Один из примеров — выполнение алгоритмов с байесовской вероятностью на дереве поиска или графах. В этом случае приходится бороться с экспоненциальным ветвлением или другими схожими формами проклятия размерности. Другой пример — выпуклость или иная нелинейно ограниченная оптимизация для классификации паттернов. Итальянский математик Жозеф Луи Лагранж нашел алгоритм общего решения, которым мы пользуемся до сих пор. Он обнаружил его в 1811 году. Хитроумные трюки и ловкие манипуляции всегда могут быть полезны. Но прогресс крайне сильно зависит от того, чтобы эти алгоритмы выполнялись на все более быстрых компьютерах. Сами алгоритмы состоят в основном из большого числа операций сложения и умножения, а значит, маловероятно, что они в какой-то момент неожиданно проснутся и захватят мир. Вместо этого они научатся еще лучше учиться и распознавать еще более сложные паттерны просто потому, что будут быстрее складывать и умножать.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Коллектив авторов читать все книги автора по порядку

Коллектив авторов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Что мы думаем о машинах, которые думают [Ведущие мировые ученые об искусственном интеллекте] отзывы


Отзывы читателей о книге Что мы думаем о машинах, которые думают [Ведущие мировые ученые об искусственном интеллекте], автор: Коллектив авторов. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x