Коллектив авторов - Что мы думаем о машинах, которые думают [Ведущие мировые ученые об искусственном интеллекте]
- Название:Что мы думаем о машинах, которые думают [Ведущие мировые ученые об искусственном интеллекте]
- Автор:
- Жанр:
- Издательство:Альпина нон-фикшн
- Год:2017
- Город:Москва
- ISBN:978-5-9614-4944-0
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Коллектив авторов - Что мы думаем о машинах, которые думают [Ведущие мировые ученые об искусственном интеллекте] краткое содержание
Что мы думаем о машинах, которые думают [Ведущие мировые ученые об искусственном интеллекте] - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Результаты недавних эмпирических исследований в области изучения эмоций, а также последних теоретических изысканий в философии говорят о том, что различия в самом деле существенные. Предположим, вы отправились в поход и столкнулись со львом. Что с вами происходит на уровне физиологии? Если вы не отличаетесь от большинства людей, то у вас в голове проносится быстрый поток мыслей: «Я умру», «Вот ведь не повезло», «Надо сохранять спокойствие», «Надо было почитать о том, что делать в таких ситуациях» и т. д. Вы также испытываете массу чувств: удивление, страх и пр. То есть с вами происходят определенные когнитивные и аффективные процессы.
Последние работы по психологии и философии говорят о том, что когнитивное и аффективное выступают в единстве. Дело не только в том, что один человек может в большей или меньшей степени влиять на другого в различных контекстах. В действительности существует единый когнитивный/аффективный процесс, лежащий в основе двух параллельных и взаимодействующих процессов, которые нельзя разделить. Большая часть нашего мышления имеет такой холистический характер; наш способ обработки информации является скорее когнитивным/аффективным, нежели чисто когнитивным. Если мы и получим чисто когнитивный процесс, то он будет производным от базового единого процесса. Это отличие Системы 1 от Системы 2 [93] Термины Система 1 и Система 2 предложены психологами Китом Становичем и Ричардом Уэстом в статье «Индивидуальные различия в мышлении: последствия для дискуссии о рациональности?» (Individual Difference in Reasoning: Implications for the Rationality Debate?) для обобщенного обозначения двух полюсов человеческого мышления. Система 1 объединяет такие аспекты, как бессознательность, невербальность, шаблонность, нелогичность, ассоциативность, параллельность и др.; Система 2 объединяет сознательность, вербальность, гибкость, логичность, основанность на правилах, последовательность и др. — Прим. ред.
, где первая — в основном автоматическая и бессознательная, а вторая — эксплицитная и осознанная. Мы полагаем, что процессы и на уровне Системы 1, и на уровне Системы 2 сами по себе являются холистическими, то есть когнитивными/аффективными.
Нет убедительных данных (по крайней мере, пока) о том, что артефактные мыслящие машины способны выполнять такую когнитивную/аффективную обработку информации. Есть убедительные данные о том, что они способны научиться лучше делать то, что уже умеют, но они просто не работают с информацией в рамках единого когнитивного/аффективного процесса, характерного для нас. Их способ обработки информации схож лишь с частью этого единого процесса. Из сказанного не следует, что такие вещи, как компьютеры, неспособны чувствовать и, следовательно, не могут мыслить; скорее можно сделать вывод, что их мышление категорически отличается от нашего.
Контекст очень важен
[94] Долан П. Счастье по расчету: Как управлять своей жизнью, чтобы быть счастливым каждый день. — Альпина Паблишер, 2015.
В какой момент мы будем готовы сказать, что машина мыслит? Когда она сможет делать расчеты, когда сможет понимать контекстуальные сигналы и соответствующим образом изменять свое поведение, когда сможет подражать эмоциям и вызывать их у других? Ответ на основной вопрос зависит от того, что мы подразумеваем под мышлением. Есть множество сознательных (Система 2) процессов, с которыми машина справится лучше, точнее и с меньшим объемом искажений, чем мы. Но машина не может мыслить в автоматическом (Система 1) режиме. Мы не до конца понимаем автоматические процессы, которые определяют то, как мы себя ведем и как мыслим, поэтому мы не можем запрограммировать машину вести себя так, как человек.
Тогда ключевой вопрос таков: если машина способна мыслить в режиме Системы 2 на скорости человеческой Системы 1, то не будет ли ее «мышление» в чем-то превосходить наше? Что ж, тут очень важен контекст: в чем-то — да, так и получится; в чем-то — нет. Машины не будут близоруки. Они сумеют решить наши экологические проблемы; они не станут жертвой стереотипов и оценочных суждений; они облегчат страдания многих; они будут лишены нашей склонности к аффективному прогнозированию и т. д. Но, с другой стороны, компьютер может не понравиться нам. Что, если поэт и машина напишут одно и то же стихотворение? Понимая, что стихотворение сгенерировано программой, читатель наверняка воспримет его хуже; знание об авторе-человеке окрашивает линзу, через которую читатель оценивает и интерпретирует стихи.
Как предотвратить взрыв интеллекта
Значительная часть риторики по поводу экзистенциальных рисков, связанных с искусственным интеллектом (и сверхинтеллектом вообще), задействует метафору «взрыв интеллекта». Проводится аналогия с ядерными цепными реакциями: исследователи искусственного интеллекта словно бы работают с каким-то элементом смартонием, и, если будет достигнута достаточная его концентрация, мы получим неконтролируемый взрыв интеллекта — цепную реакцию — с непредсказуемыми результатами. Это нельзя назвать точным описанием реальных рисков. Взаимосвязанные алгоритмы искусственного интеллекта не станут ни с того ни с сего захватывать Вселенную. Взрыв интеллекта не произойдет случайно; это потребует построения особого вида системы ИИ, которая сможет обнаруживать в мире упрощающие структуры, конструировать вычислительные устройства, которые будут их использовать, а затем предоставлять автономию и ресурсы своим детищам, и т. д.
Чтобы произошел взрыв интеллекта, необходимое рекурсивное выполнение четырех шагов. Во-первых, система должна уметь проводить эксперименты в физическом мире. В противном случае она не сможет добавить никакого нового знания к уже созданному человеком. (Большая часть недавних достижений в области искусственного интеллекта связана с применением машинного обучения для воспроизведения человеческого знания, а не для его расширения.) В большинстве философских дискуссий по поводу искусственного интеллекта прослеживается естественная тенденция фокусироваться на чистом рассуждении, как будто этого достаточно для расширения знания. В особых случаях (например, в математике и некоторых разделах физики) новое знание может быть получено в ходе чистого рассуждения. Но, как правило, развитие научного знания почти исключительно достигается в ходе сбора эмпирических данных, подтверждающих или опровергающих те или иные гипотезы. Поэтому мы и построили Большой адронный коллайдер, поэтому любые инженерные изыскания связаны с созданием и тестированием прототипов. Машины явно способны с этим справиться, более того, уже существует несколько «автоматизированных ученых».
Читать дальшеИнтервал:
Закладка: