Enrique Rodriguez - Камень, ножницы, теорема. Фон Нейман. Теория игр.

Тут можно читать онлайн Enrique Rodriguez - Камень, ножницы, теорема. Фон Нейман. Теория игр. - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci_popular, издательство Де Агостини, год 2015. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Камень, ножницы, теорема. Фон Нейман. Теория игр.
  • Автор:
  • Жанр:
  • Издательство:
    Де Агостини
  • Год:
    2015
  • ISBN:
    нет данных
  • Рейтинг:
    3/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Enrique Rodriguez - Камень, ножницы, теорема. Фон Нейман. Теория игр. краткое содержание

Камень, ножницы, теорема. Фон Нейман. Теория игр. - описание и краткое содержание, автор Enrique Rodriguez, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Джон фон Нейман был одним из самых выдающихся математиков нашего времени. Он создал архитектуру современных компьютеров и теорию игр — область математической науки, спектр применения которой варьируется от политики до экономики и биологии, а также провел аксиоматизацию квантовой механики. Многие современники считали его самым блестящим ученым XX века.

Камень, ножницы, теорема. Фон Нейман. Теория игр. - читать онлайн бесплатно полную версию (весь текст целиком)

Камень, ножницы, теорема. Фон Нейман. Теория игр. - читать книгу онлайн бесплатно, автор Enrique Rodriguez
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Одной из основных задач, над которыми фон Нейман работал в этот период своей жизни, был универсальный самовоспроизводящийся клеточный автомат. Эта задача затрагивала вопрос репродукции — великой загадки жизни. Ученый хотел доказать, что это явление подчиняется не таинственным законам, а более или менее простым математическим правилам — настоящему языку природы.

Универсальный автомат фон Неймана — это машина, состоящая из модуля, который при помощи четких инструкций и имеющихся материалов может смоделировать все что угодно, а также имеет необходимые инструкции для воспроизведения себя самого. Фон Нейману пришлось добавить одно условие, чтобы избежать так называемой бесконечной регрессии: где- то в машине должны содержаться инструкции, описывающие ее саму. Таким образом, эти инструкции должны были содержать другие инструкции, которые их описывают, и так далее. Но в любом случае машина не может иметь такую бесконечную регрессию. Чтобы решить эту проблему, фон Нейман добавил третий элемент — репродуктор инструкций. Таким образом, полная версия устройства состояла из конструктора, списка программ-инструкций и репродуктора. В первой фазе список программ-инструкций подвергался интерпретации, а во второй — просто копировался.

Для создания самовоспроизводящегося устройства в компьютере необходимо было сделать автомат, который не уступал бы машине Тьюринга. Теоретически для этого можно использовать логические выражения NOT-AND-OR (нет-и-или). Например, можно сделать выражение NOT с так называемым планерным ружьем Госпера, но эта схема слишком сложна, чтобы описывать ее здесь. Фон Нейман доказал, что при таких условиях клеточный автомат с 200 тысячами состояний смог бы самовоспроизводиться, однако его описание превышает наши вычислительные способности.

Если однажды клеточный автомат фон Неймана будет создан, это значит, что где-то появится робот, окруженный материалами, который примется за работу и по истечении определенного времени создаст свою точную копию. Потом их станет две, потом четыре и так далее в геометрической прогрессии. Однако фон Нейман не мог предвидеть того (и сегодня никто не может этого сделать), как эти роботы будут вести себя по отношению к людям. Это важный вопрос, ведь за короткое время количество роботов стало бы огромным, и их становилось бы все больше.

В 1948 году фон Нейман спроектировал универсальный конструктор. Эта машина, следуя заданным инструкциям, могла собрать другую машину из материалов, находящихся рядом. Нечто подобное мы можем наблюдать на любой роботизированной фабрике. Но ученый хотел пойти еще дальше и снабдить машину инструкциями и материалами, необходимыми для создания точной копии самой себя; другими словами, он хотел создать клеточный автомат. Природа, в которой мы живем, изобилует клеточными автоматами, ДНК — один из них. Любопытно, что фон Нейман — один из самых выдающихся теоретиков XX века — хотел преодолеть теорию с помощью своей самовоспроизводящейся машины, которую назвал «Кинематон».

Пока фон Нейман сражался с многочисленными техническими трудностями, возникшими при создании «Кинематона», его друг, американский математик польского происхождения Станислав Улам, дал ему хороший совет. Если фон Нейман хотел досконально изучить законы, на которых основывался этот процесс, ему надо было отложить в сторону ручную сборку и заняться виртуальной моделью. Тогда ученый изменил свою тактику и создал простую бесконечную матрицу, в которой можно было представить каждую клетку, как если бы перед нами лежал разграфленный листок, и каждая графа была бы занята. Все клетки должны иметь некое состояние, а их число должно быть конечным. В оригинальной модели фон Неймана для каждой клетки существовало 29 состояний. Идея заключалась в том, что, исходя из заданных правил, каждое состояние каким-то образом зависело от состояния соседних клеток и от своего предыдущего. Таким образом, система напоминала живые системы, по крайней мере в том смысле, что клетки могли меняться и входить в контакт с другими, находящимися в похожем или таком же состоянии. Итак, фон Нейман хотел исследовать очень сложную структуру при помощи очень простой модели — клеточных автоматов.

РОБОТОТЕХНИКА

Термин «робот», происходящий от чешского слова robota (подневольный труд), впервые появился в театральной пьесе *Россумские универсальные роботы» чешского драматурга Карела Чапека.

Она была поставлена в январе 1921 года в Праге. Действие в ней разворачивается вокруг фабрики, на которой создают механических существ для службы человеку. В конце пьесы роботы уничтожают людей. Робототехника — прикладная наука, на основе которой при помощи кибернетики и технической инженерии можно построить машину, управляемую специальной программой и способную обращаться с предметами, а также в некоторой мере взаимодействовать с окружающей средой.

Ее цель — замена людей на ряде однообразных, а также слишком тяжелых для человека или просто опасных операций. Тело робота состоит из механических элементов из металла или пластика и двигается благодаря сервомотору. Нервная система сформирована электропроводами, в венах течет смазывающее масло. Его мозг не просто похож на компьютер — это и есть компьютер. Однако часто встречается ошибочное представление о том, что робот должен походить на человека (в узком понимании посудомоечная машина — тоже робот). Робот должен отвечать трем основным характеристикам.

1. Его можно запрограммировать, как и компьютер.

2. Он должен быть машиной, способной выполнять конкретные действия в окружающей его среде.

3. Он должен быть гибким.

Третье свойство вытекает из двух предыдущих, так как, с одной стороны, подразумевает способность оперировать широким спектром программ, а с другой — взаимодействовать со средой разными способами.

Робот играющий на фортепиано Шанхайский музей науки и техники Китай - фото 37

Робот, играющий на фортепиано. Шанхайский музей науки и техники, Китай.

КЛЕТОЧНЫЙ АВТОМАТ

Клеточный автомат — это математическая абстракция клеточных процессов, которые наблюдаются в живых организмах. Его можно определить как динамическую систему, состоящую из двух компонентов: пространства клетки и правил поведения.

По определению клеточное пространство — это пространство фон Неймана, в котором его элементы, называемые клетками, находятся в состоянии, определяемом либо конечным числом значений {v1 ..., vn}, либо любым непрерывным значением. Это определение может показаться немного путаным, но его цель — показать, что даже если результат выглядит как очень простая игра, он не лишен математического формализма. Но чтобы выражаться понятнее, сведем рассуждения к простой формулировке, которая и используется в теоретических описаниях. Для начала пространство фон Неймана становится двумерным, чтобы его можно было представить на листке, в котором каждый квадратик обозначает клетку. Из двух множеств значений мы не будем рассматривать непрерывное множество, так как весь процесс происходит во внутренних механизмах компьютера, а они всегда работают с дискретными величинами. Из возможных множеств {v1 ..., vn} этих дискретных значений оставим только два — {1, 0}. Первое означает, что клетка жива, второе — что она мертва. Мы также можем выбрать два разных цвета. Итак, возьмем лист бумаги в клетку и ограничим нашу зону работы, например, квадратом со стороной 7 клеток. Затем возьмем черный фломастер и закрасим клетки (см. рисунок 1 на следующей странице).

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Enrique Rodriguez читать все книги автора по порядку

Enrique Rodriguez - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Камень, ножницы, теорема. Фон Нейман. Теория игр. отзывы


Отзывы читателей о книге Камень, ножницы, теорема. Фон Нейман. Теория игр., автор: Enrique Rodriguez. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x