Николай Юшкин - Оптический флюорит

Тут можно читать онлайн Николай Юшкин - Оптический флюорит - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci_popular, издательство Наука, год 1983. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Оптический флюорит
  • Автор:
  • Жанр:
  • Издательство:
    Наука
  • Год:
    1983
  • Город:
    Москва
  • ISBN:
    нет данных
  • Рейтинг:
    3/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Николай Юшкин - Оптический флюорит краткое содержание

Оптический флюорит - описание и краткое содержание, автор Николай Юшкин, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Флюорит — один из удивительных минералов, широко применяющийся в металлургии, химической промышленности, в производстве керамики, в строительной индустрии. Уникальные оптические свойства флюорита легли в основу создания широкого класса исследовательских оптических приборов и технических устройств. В нашей стране была успешно решена проблема создания искусственных кристаллов оптического флюорита, полностью заменившего природные кристаллы.

Оптический флюорит - читать онлайн бесплатно полную версию (весь текст целиком)

Оптический флюорит - читать книгу онлайн бесплатно, автор Николай Юшкин
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Рис 22 Схема горизонтальной направленной кристаллизации 1 затравка 2 - фото 42

Рис. 22. Схема горизонтальной направленной кристаллизации

1 — затравка; 2 — кристалл; 3 — расплав; 4 — контейнер-лодочка; 5 — нагреватель

Легирование кристаллов флюорита.Главным компонентом шихты для выращивания легированных кристаллов является либо особо чистый природный флюорит, либо флюорит, очищенный одним из охарактеризованных выше методов перекристаллизации. К шихте примешиваются в определенном количестве соединения того элемента, который вводится в кристаллы флюорита. Чаще всего возникает необходимость активирования кристаллов редкоземельными элементами, методика которого достаточно хорошо разработана [Воронько и др., 1965; Шамовский и др., 1970; Guggenheim, 1961]. Особенностью методики является то, что элементы-примеси, которые существуют в стабильных соединениях в более высоковалентных состояниях, а в кристалл флюорита должны войти в форме соединения низшей валентности, в процессе кристаллизации восстанавливаются углеродом (например, от Dy 3+в DyF 3до Dy 2+в CaF 2). Углерод добавляется в шихту в виде спектрально чистого графита вместе с активатором (TRF 3) и раскислителем (PbF 2или CdF 2). Также достаточно просты методики получения и других смешанных кристаллов, например CaF 2—SrF 2.

Получение кристаллов с определенными свойствами

Управление основными свойствами кристаллов осуществляется, как мы неоднократно подчеркивали, через состав, но многие свойства можно изменять в ту или иную сторону. Здесь мы расскажем о некоторых приемах обеспечения определенных физических свойств искусственных кристаллов флюорита.

Моноблочность и однородность.При использовании монокристаллов флюорита в нелинейной оптике, в частности для изготовления активных элементов лазеров, в качестве одного из основных требований выдвигается моноблочность кристаллов и отсутствие в них даже малоугловых границ [Никогосян, 1977].

По существующей промышленной технологии, применяя самые «мягкие» режимы роста и отжига, можно получить монокристаллы флюорита относительно небольших размеров с разориентировкой блоков мозаики в 10—20 угловых минут. Они вполне удовлетворяют требованиям квантовой электроники, но их получение — скорее результат случая, чем решения поставленной технологической задачи. Моноблочные кристаллы выискивают в партиях обычной продукции.

Как показывает теоретико-экспериментальный анализ причин возникновения микро- и макронесовершенств оптических кристаллов [Мильвидский, Освенский, 1975], метод Шамовского—Стокбаргера—Степанова мало перспективен для получения моноблочных и малодислокационных кристаллов. Возникновению несовершенств здесь способствует много факторов: отсутствие совершенной затравки, содержащей своего рода код для правильного встраивания частиц, жесткая форма тигля, взаимодействие расплава со стенками тигля, большие температурные градиенты в кристаллизующемся блоке и т. п.

Добиться почти полной моноблочности можно в том случае, если применить к выращиванию кристаллов флюорита метод Чохральского, особенно его вариант регулируемого формообразования, известный как метод Степанова. При этом необходимо использование бездефектных затравок и проведение процесса кристаллизации в условиях малых температурных градиентов.

Неравномерность теплового поля вокруг и внутри растущего кристалла является также причиной неравномерного распределения структурных дефектов. Оно проявляется через неравномерность распределения окраски под действием ионизирующего излучения (фото 13, см. вкл.). Участки с аномальным двойным лучепреломлением возникают в основном по той же причине [Arizumi, Kobayashi, 1969]. Для снижения плотности и интенсивности этих дефектов кристаллы выращивают при минимальных градиентах (не более 10° С в объеме слитка), выдерживая плоскую форму фронта кристаллизации. Для ответственных оптических изделий вырезаются блоки из менее дефектных центральных частей слитков.

Люминесценция.Различные виды люминесценции кристаллов флюорита являются серьезным препятствием для их использования в специальной микроскопной и спектральной оптике, поэтому задача получения нелюминесцирующих кристаллов решается на любом ростовом предприятии.

Еще в 50-х годах П. П. Феофилов [Степанов, Феофилов, 1956] обратил внимание на зависимость характеристики люминесценции искусственных кристаллов от условий их выращивания. Глубокий анализ взаимосвязи явлений люминесценции с составом, содержанием и особенностями вхождения в решетку кристалла различных примесей, с механизмами роста, температурно-временными параметрами отжига, состоянием воздушной среды при росте и отжиге кристаллов и другими факторами был сделан А. М. Прохоровым и В. В. Осико [1975]. Эти исследования позволяют разрабатывать методики получения кристаллов с определенным тоном люминесценции главным образом путем введения примесей. Однако для получения нелюминесцирующих кристаллов наиболее надежным остается пока пассивный путь: использование нелюминесцирующих разностей исходного сырья. Но и в этом случае для достижения положительных результатов требуется принятие специальных мер, в частности соблюдения высокой чистоты всей оснастки, поддержания высокого вакуума (10 -5и 10 -6мм рт. ст.).

Флюорит из месторождений пегматитового типа мало пригоден для получения нелюминесцирующих кристаллов. Проблему удалось решить благодаря освоению флюорита из гидротермальных месторождений [Юшкин и др., 1977, 1982].

Остановимся кратко на особенностях люминесценции природного флюорита гидротермальных месторождений и выращенных из него кристаллов.

Природный флюорит. Фотолюминесценция при возбуждении УФ-источником (λ возб= 366 и 237,5 нм) для флюорита, как правило, не характерна. Свечение и послесвечение отмечаются только вблизи кальцитовых прожилок и усиливаются после γ-облучения образцов. Для флюорита из ряда районов при температуре жидкого азота обнаруживается желто-зеленое свечение и послесвечение, свидетельствующее о присутствии иттербия и характерное для флюорита ранних стадий постмагматического процесса.

Термолюминесценция флюорита изучалась в интервале 20—370° С. Для общей совокупности кривых термовысвечивания характерны пять главных максимумов, по-разному выраженных на конкретных кривых, которые отличаются существенным разнообразием. Эти максимумы локализуются главным образом в интервалах: до 80, 140—160, 230—240, 270—300 и 330—360° С. Они могут быть приписаны определенным центрам: дырочным F i 0(80° C), YO 2 0(140—160° С) и донорно-акцепторным парам O -—TR 2+и TR 2+—TR 4+(230—240, 270—300 и 330—360° C).

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Николай Юшкин читать все книги автора по порядку

Николай Юшкин - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Оптический флюорит отзывы


Отзывы читателей о книге Оптический флюорит, автор: Николай Юшкин. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x